LDMEs extraction, relativistic correction, soft gluon resummation

Yan-Qing Ma

Peking University

Physics Opportunities with Heavy Quarkonia at the EIC Online, 2021/10/25-28

Outline

I. NRQCD factorization with dominant LDMEs

- II. Relativistic corrections
- II. Soft gluon factorization
- IV. Summary and outlook

NRQCD: factorization

> Factorization formula

Bodwin, Braaten, Lepage, 9407339

$$(2\pi)^3 2P_H^0 \frac{d\sigma_H}{d^3 P_H} = \sum_n d\hat{\sigma}_n(P_H) \langle \mathcal{O}_n^H \rangle$$

Production of a heavy quark pair

Hadronization (LDMEs)

- n: quantum numbers of the pair: color, spin, orbital angular momentum, total angular momentum, spectroscopic notation $^{2S+1}L_I^{[c]}$
- > A glory history
- Solved IR divergences in P-wave quarkonium decay
- Explained ψ' surplus
- Explained χ_{c2}/χ_{c1} production ratio

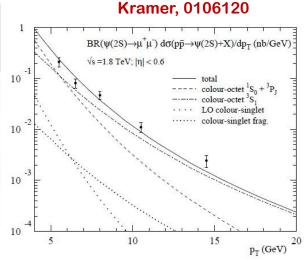
Thanks to coloroctet mechanism

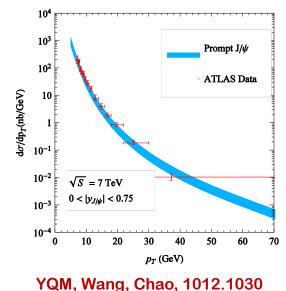
•

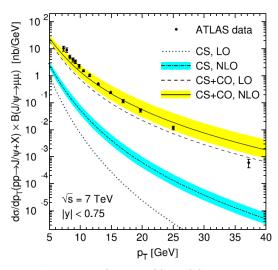
Achievement: explain $\psi(nS)$ surplus

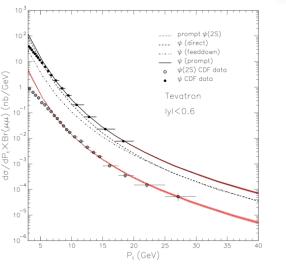
$\triangleright \psi(nS)$ production in NRQCD

States	Power in v	p _T behavior at LO	p _T behavior at NLO
${}^{3}S_{1}^{[1]}$	V ⁰	p _T -8	p _T -6
${}^{3}S_{1}^{[8]}$	V ⁴	p _T -4	p _T -4
${}^{1}S_{0}^{[8]}$	V^3	p _T -6	p _T -4
³ P _J [8]	V^4	p _T -6	p _T -4









Butenschoen, Kniehl, 1105.0820

Gong, Wan, Wang, Zhang, 1205.6682

NLO fit by PKU group

- Fit J/ψ yield data at Tevatron with $p_T > 7$ GeV
 - Due to p_T^{-4} and p_T^{-6} behaviors, constrain two combinations
 - $M_0 = \langle O(^{1}S_0^{[8]}) \rangle + 3.9 \langle O(^{3}P_0^{[8]}) \rangle / m_c^2 \approx 0.074 \pm 0.019 \text{ GeV}^3$
 - $M_1 = \langle O(^3S_1^{[8]}) \rangle 0.56 \langle O(^3P_0^{[8]}) \rangle / m_c^2 \approx 0.0005 \pm 0.0002 \text{GeV}^3$
- Upper bound from Belle total cross section

$$M_0 < 0.02 \text{GeV}^3$$

Zhang, YQM, Wang, Chao, 0911.2166

No universality of NRQCD LDMEs!

NLO fit by Hamburg group

> NLO NRQCD V.S. Global data

Butenschoen, Kniehl, 1105.0820

- Including Belle, LEP, HERA, RHIC, Tevatron, LHC
- Total of 194 data points from 26 data sets
- Exclude $p_T < 3 \ GeV$ pp data and $p_T < 1 \ GeV$ ep data

$$\langle \mathcal{O}^{J/\psi}(^3S_1^{[1]})\rangle = 1.32 \text{ GeV}^3 \qquad \chi^2_{\text{d.o.f.}} = 725/194 = 3.74$$

$$\begin{array}{c|c}
\langle \mathcal{O}^{J/\psi}(^{1}S_{0}^{[8]}) \rangle & (4.97 \pm 0.44) \times 10^{-2} \text{ GeV}^{3} \\
\langle \mathcal{O}^{J/\psi}(^{3}S_{1}^{[8]}) \rangle & (2.24 \pm 0.59) \times 10^{-3} \text{ GeV}^{3} \\
\langle \mathcal{O}^{J/\psi}(^{3}P_{0}^{[8]}) \rangle & (-1.61 \pm 0.20) \times 10^{-2} \text{ GeV}^{5}
\end{array}$$

Data are not well described by NLO NRQCD, especially Belle data

NLO fit by IHEP group

\triangleright Fit I/ψ yield data at Tevatron and LHC

Gong, Wan, Wang, Zhang, 1205.6682

Exclude $p_T < 7 \, GeV$ pp data

$$(\langle \mathcal{O}(^{1}S_{0}^{[8]})\rangle, \langle \mathcal{O}(^{3}S_{1}^{[8]})\rangle, \frac{\langle \mathcal{O}(^{3}P_{0}^{[8]})\rangle}{m_{c}^{2}}) \equiv \frac{\mathcal{O}}{100} \text{ GeV}^{3}$$

 $\mathcal{O} = (9.7 \pm 0.9, -0.46 \pm 0.13, -0.95 \pm 0.25)$

Results of the three groups: disagree

•
$$M_0 \approx 0.074 \pm 0.019 \text{ GeV}^3$$
 • $M_0 \approx 0.021 \text{ GeV}^3$

•
$$M_0 \approx 0.021 \, \text{GeV}^3$$

•
$$M_1 \approx 0.0005 \pm 0.0002 \text{GeV}^3$$

PKU

•
$$M_1 \approx 0.026 \text{GeV}^3$$

Hamburg

•
$$M_0 \approx 0.081 \, \text{GeV}^3$$

•
$$M_1 \approx -0.0022 \text{GeV}^3$$

7/28

NLO fit by ANL-Korea group

\triangleright Fit J/ψ yield data at Tevatron and LHC

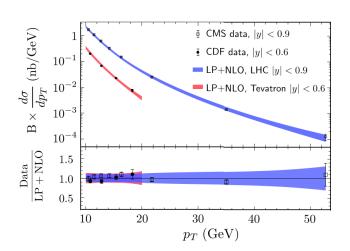
Bodwin, Chung, Kim, Lee, 1403.3612

- Exclude $p_T < 10 \; GeV \; data$
- Large logs at LP in $1/p_T^2$ expansion are resumed

$$\frac{d\sigma^{\rm LP+NLO}}{dp_T} = \frac{d\sigma^{\rm LP}}{dp_T} - \frac{d\sigma^{\rm LP}_{\rm NLO}}{dp_T} + \frac{d\sigma_{\rm NLO}}{dp_T}$$

$$\langle \mathcal{O}^{J/\psi}(^{1}S_{0}^{[8]})\rangle = -0.030 \pm 0.381 \text{ GeV}^{3}$$

 $\langle \mathcal{O}^{J/\psi}(^{3}S_{1}^{[8]})\rangle = 0.023 \pm 0.057 \text{ GeV}^{3}$
 $\langle \mathcal{O}^{J/\psi}(^{3}P_{0}^{[8]})\rangle = 0.043 \pm 0.106 \text{ GeV}^{5}$



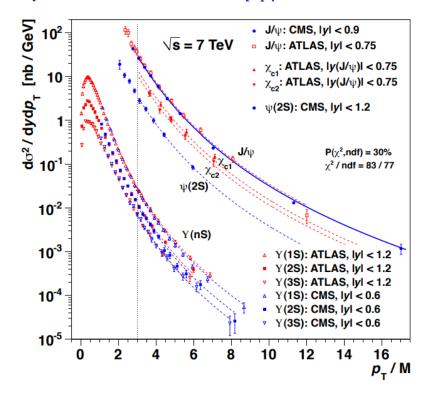
> Good fit, yet another different set of LDMEs

Data driven by CERN et. al. group

\triangleright Fit J/ψ yield data at Tevatron and LHC

• Similar shape as functions of p_T/M

Faccioli, Knunz, Lourenco, Seixas, Wohri, 1403.3970



• Ignoring ${}^3P_{\rm J}^{[8]}$ contributions, ${}^1S_0^{[8]}$ dominance

Summary of current status

> Agreement among different groups:

• NLO NRQCD theory has difficulty to describe global data (Warning: perfect agreement for χ_{cJ} production! Problems with η_c production not discussed)

Rigorousness of NRQCD

Based on EFT of QCD: NRQCD

Nayak, Qiu, Sterman, 0509021 Bodwin, Chung, Ee, Kim, Lee, 1910.05497 Zhang, Meng, YQM, Chao, 2011.04905

Factorization has been tested to NNLO

What is missing?

- Remember: summation over all possible n in NRQCD formula
- Corrections at high powers in v (relativistic corrections)!

Outline

- I. NRQCD factorization with dominant LDMEs
- II. Relativistic corrections
- II. Soft gluon factorization
- IV. Summary and outlook

Relativistic corrections in NRQCD

- > Relativistic (power) corrections
 Equations of motion of NRQCD EFT: $\left(iD_0 \frac{D^2}{2m} + \cdots\right)\psi = 0$
 - NRQCD factorization: use EOM to remove ∇_0 , leaving operators like:

(Warning: here D replaced by ∇ , needs proper gluon fields to make them gauge invariant)

Leading term

$$\chi^{\dagger} \overleftrightarrow{\nabla}^2 \psi$$

Type I: Relative momentum

$$\nabla^2(\chi^\dagger\psi)$$

Type II: Total momentum

$$\chi^{\dagger} \left(\overleftrightarrow{\nabla}^i \overleftrightarrow{\nabla}^j - \overleftrightarrow{\nabla}^2 \delta^{ij} / 3 \right) \psi$$

Type III: Orbital excited states, like D-wave

$$\chi^{\dagger}(g\boldsymbol{E}\cdot\boldsymbol{\sigma})\psi$$

Type IV: Intrinsic gluon insertion

(For pp collision, only type-I have been considered,

about 30%-50% corrections for charmonium)

CS-channel:

Fan, YQM, Chao, 0904.4025

CO-channel:

Xu, Li, Liu, Zhang, 1203.0207

S-D mixing-channel (including ep collision):

He, Kniehl, 1507.03882

LP in p_T , all order in v:

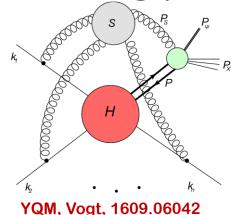
Li, Chen, Huang, YQM, 1909.03554

However, more relativisticcorrection terms may be needed!

Soft gluon emission

> Soft gluon emission in color-bleaching process

- P_{ψ} is different from P, $P = P_{\psi}[1 + O(\lambda)]$
- NRQCD expand P around P_{ψ}
- Bad convergence of NRQCD expansion



• Cross section approximately
$$\propto P^{-4} = P_{\psi}^{-4} [1 + O(\lambda)]^{-4}$$

$$\int_{-1}^{1} \frac{d\cos\theta}{2(1+\lambda+\lambda\cos\theta)^4} = 0.42$$

$$= 1 - 4\lambda + 40/3\lambda^2 - 40\lambda^3 + \cdots$$
With $\lambda \approx v^2 \approx 0.3$

$$= 1 - 1.2 + 1.2 - 1.08 + 0.91 - 0.73 + \cdots$$
Mangano, Petrelli, 9610364

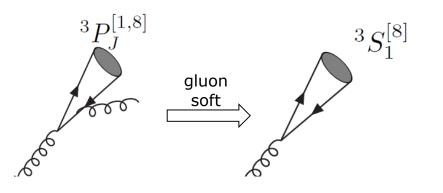
 Solution: soft gluon momentum should be kept but not expanded, which means to resum relativistic corrections (due to kinematic effects) to all powers in v!

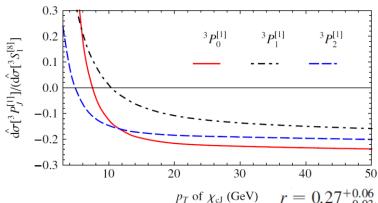
Over subtraction

Braaten, Chen, 9610401 YQM, Wang, Chao, 1002.3987

 \triangleright Eg. χ_{cI} production:

$$d\sigma_{\chi_{cJ}}/(2J+1) \approx d\hat{\sigma}_{3\boldsymbol{p}_{J}^{[1]}}\langle O\left({}^{3}\boldsymbol{P}_{0}^{[1]}\right)\rangle + d\hat{\sigma}_{3\boldsymbol{S}_{1}^{[8]}}\langle O\left({}^{3}\boldsymbol{S}_{1}^{[8]}\right)\rangle$$





- Soft gluon in P-wave: factorized to S-wave matrix element
- Subtraction scheme: at <u>zero momentum</u>, which contributes the largest production rate. Over subtracted! P-wave negative!
- Big cancellation between S-wave and P-wave! Perturbation unstable
- Solution: soft gluon momentum should be kept during subtraction process, or resum kinematic effects to all powers in v.

Threshold region

> At threshold region

Large logarithms appear: can be resummed by introducing shape

functions Beneke, Rott

Beneke, Rothstein, Wise, 9705286 Fleming, Leibovich, Mehen, 0306139

Leibovich, Liu, 0705.3230

 Soft gluon momentum: has leading contribution for quarkonium momentum distribution, cannot be ignored

- Combination of logs resummation and powers resummation is needed
 - Keep soft gluon momentum unexpanded is the first step.

Comments

\triangleright Relativistic corrections with fixed power in v

- Bad convergence, too many terms are needed
- Involves too many LDMEs, very hard to fix them; Tentative values are chosen in literature
- Solution: sum all LDMEs to obtain a function!

> What do we need to resum?

- Type I and II ($\chi^{\dagger} \overrightarrow{\nabla}^2 \psi$, $\nabla^2 (\chi^{\dagger} \psi)$): kinematic effects, enhanced if the observable has a steep distribution. E.g., p_T distribution in pp collision, momentum distribution in endpoint region
- Type III and IV: usually not enhanced, less important (can also be studied)

$$\chi^{\dagger} \left(\overleftrightarrow{\nabla}^{i} \overleftrightarrow{\nabla}^{j} - \overleftrightarrow{\nabla}^{2} \delta^{ij} / 3 \right) \psi$$
 $\chi^{\dagger} (g \boldsymbol{E} \cdot \boldsymbol{\sigma}) \psi$

$$\chi^{\dagger}(g \boldsymbol{E} \cdot \boldsymbol{\sigma}) \psi$$

Outline

- I. NRQCD factorization with dominant LDMEs
- II. Relativistic corrections
- II. Soft gluon factorization
- IV. Summary and outlook

SGF: exclusive processes

> Different way to use EOM

Li, Feng, YQM, 1911.05886 Chen, YQM, 2005.08786

- NRQCD factorization: use EOM to remove ∇₀
- SGF: use EOM to remove relative derivatives, leaving only total derivatives:

$$\langle 0 | \nabla_0^{n_1} \nabla^{2n_2} (\chi^{\dagger} \psi) | H \rangle$$

the same degrees of freedom as NRQCD factorization

- > Using integration by parts
 - Remove operators unless $n_1 = n_2 = 0$
- > Factorization

$$\mathcal{A}^{Q} = \sum_{n} \hat{\mathcal{A}}^{n} \overline{R}_{Q}^{n*} \qquad \overline{R}_{Q}^{n*} = \langle 0 | [\overline{\Psi} \mathcal{K}_{n} \Psi](0) | Q \rangle_{S}$$

Matching coefficients are functions of quarkonium mass

SGF: inclusive processes

> Use EOM to remove relative derivatives

$$\langle H + X | \nabla_0^{n_1} \nabla^{2n_2} (\chi^{\dagger} \psi) | 0 \rangle$$

> Using integration by parts

YQM, Chao, 1703.08402 Chen, YQM, 2005.08786

- Remove operators unless $n_1 = n_2 = 0$
- Matching coefficients are functions of: P_H^2 , $P_H \cdot P_X$, P_X^2

> Factorization

$$(2\pi)^3 2P_H^0 \frac{d\sigma_H}{d^3 P_H} \approx \sum_n \int \frac{d^4 P}{(2\pi)^4} \mathcal{H}_n(P) F_{n\to H}(P, P_H)$$

 $\bullet \quad n = {}^{2S+1} L_J^{[c]}$

• \mathcal{H}_n : perturbatively calculable hard parts

- P: momentum of Qar Q
- $F_{n\rightarrow H}$: nonperturbative soft gluon distributions (SGDs)
- UV renormalization scale is suppressed

Soft gluon distributions (SGDs)

> Operator definition

Expectation values of bilocal operators in QCD vacuum

$$F_{n\to H}(P, P_H) = \int d^4b e^{-iP\cdot b} \langle 0| [\overline{\Psi}\mathcal{K}_n\Psi]^{\dagger}(0) (a_H^{\dagger}a_H) [\overline{\Psi}\mathcal{K}_n\Psi](b) |0\rangle_{S}$$

with

$$a_H^{\dagger} a_H = \sum_X \sum_{\substack{J_z^H \\ z}} |H + X\rangle\langle H + X|$$

$$\mathcal{K}_n(rb) = \frac{\sqrt{M_H}}{M_H + 2m} \frac{M_H + \rlap/P_H}{2M_H} \Gamma_n \frac{M_H - \rlap/P_H}{2M_H} \mathcal{C}^{[c]}$$

Spin project operators: $\Gamma_n = \sum_{z=s} \langle L, L_z; S, S_z | J, J_z \rangle \Gamma^o_{LL_z} \Gamma^s_{SS_z}$

Color project operators:

$$C^{[1]} = \frac{\mathbf{1}_c}{\sqrt{N_c}}$$
 $C^{[8]} = \sqrt{2}t^{\bar{a}} \, \Phi_{a\bar{a}}^{(A)}(rb)$

Soft gluon distributions (SGDs)

Gauge link

$$\Phi^{(A)}(rb) = \mathcal{P} \exp\left\{-ig_s \int_0^\infty d\lambda \, b_\ell \cdot A^{(A)}(r \, b + \lambda \, b_\ell)\right\}$$
$$b_\ell^\mu = b^\mu + \varepsilon \ell^\mu \qquad 0 < \varepsilon \ll 1$$

- When b is finite, gauge link along b direction (avoid gaugelink-collinear divergence)
- When b → 0, gauge link unambiguously along l direction (agree with gauge-completed NRQCD matrix elements)

Nayak, Qiu, Sterman, 0509021

> Evaluated in small region

 Subscript "S": evaluate the matrix element in the region where offshellness of all particles is much smaller than heavy quark mass

RGEs for SGDs

> RGEs

Chen, Jin, YQM, Meng, 2103.15121

$$\frac{d}{d \ln \mu_f} F_{[L'\tilde{L}',\lambda'] \to H}(z, M_H, m_Q, \mu_f) = \sum_{L,\tilde{L},\lambda} \int_z^1 \frac{dx}{x} \boldsymbol{K}_{[L'\tilde{L}',\lambda']}^{[L\tilde{L},\lambda]}(\hat{z}, M_H/x, m_Q, \mu_f)
\times F_{[L\tilde{L},\lambda] \to H}(x, M_H, m_Q, \mu_f),$$

Evolution kernels

$$\boldsymbol{K}^{[L\tilde{L},\lambda],LO}_{[L'\tilde{L}',\lambda']}(\hat{z},M_{H}/x,m_{Q},\mu_{f}) = \frac{d}{d\ln\mu_{f}} F^{NLO}_{[L'\tilde{L}',\lambda']\to Q\bar{Q}[L\tilde{L},\lambda]}(\hat{z},M_{H}/x,m_{Q},\mu_{f}).$$

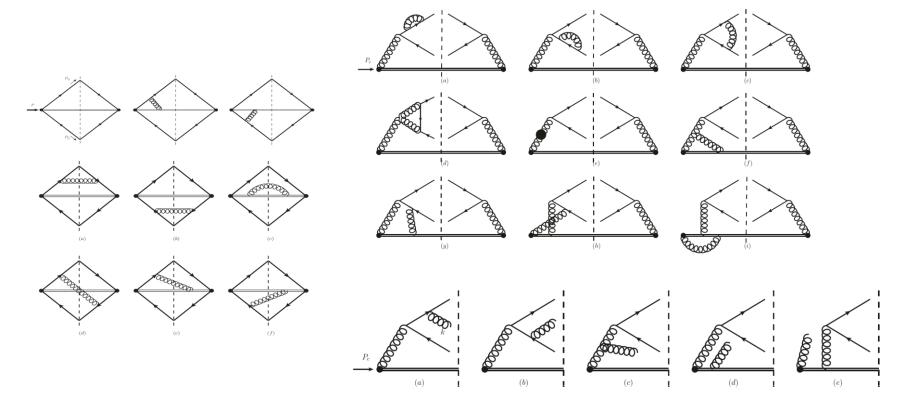
$$K_{[SS],LO}^{[SS],LO}(z, M_H, m_Q, \mu_f) = \frac{\alpha_s}{\pi} \left\{ N_c \left[\frac{2z}{(1-z)_+} - \ln \frac{\mu^2 e^{-1}}{M_H^2} \delta(1-z) - 2\delta(1-z) \left(\frac{1}{2\Delta} \ln \frac{1+\Delta}{1-\Delta} - 1 \right) \right] + \frac{1}{N_c} \left(\frac{1+\Delta^2}{2\Delta} \ln \frac{1+\Delta}{1-\Delta} - 1 \right) \delta(1-z) \right\}.$$

$$\Delta = \frac{\sqrt{M_H^2 - 4m_Q^2}}{M_H}$$

FF: $g \rightarrow Q\overline{Q}({}^{3}S_{1}^{[8]}) + X$ up to NLO

> Feynman diagrams

Chen, Jin, YQM, Meng, 2103.15121



Hard part for $g \rightarrow Q\overline{Q}({}^{3}S_{1}^{[8]}) + X$

> NRQCD

$$\begin{split} \hat{d}_{g \to ^3\!S_1^{[8]}}^{(2)} &= \frac{1}{12C_F} \Big[A(\mu_0) \delta(1-z) + \frac{1}{N_c} P_{gg}(z) \Big(\ln(\frac{\mu_0^2}{4m_Q^2}) - 1 \Big) & \text{Braaten, Lee, 0004228} \\ &+ \frac{2(1-z)}{z} - \frac{4(1-z+z^2)^2}{z} \Big(\underbrace{\frac{\ln(1-z)}{1-z}} \Big), \end{split}$$

Double logs as z → 1 (threshold logs)

> SGF

Chen, Jin, YQM, Meng, 2103.15121

$$\hat{D}_{[SS]}^{LO,(0)}(\hat{z}, M_H/x, \mu, \mu_f) = \frac{\pi \alpha_s}{(N_c^2 - 1)} \frac{8x^3}{M_H^3} \delta(1 - \hat{z}),$$

$$\hat{D}_{[SS]}^{NLO,(0)}(\hat{z}, M_H/x, \mu, \mu_f)$$

$$= \frac{4\alpha_s^2 N_c x^3}{(N_c^2 - 1)M_H^3} \left[\frac{1}{2} \delta(1 - \hat{z}) \left(2A(\mu, M_H/x) + \frac{2\beta_0}{N_c} \ln\left(\frac{x^2 \mu_f^2 e^{-1}}{M_H^2}\right) + \ln^2\left(\frac{x^2 \mu_f^2 e^{-1}}{M_H^2}\right) + \frac{\pi^2}{6} - 1 \right) + \frac{1}{N_c} P_{gg}^{(0)}(\hat{z}) \ln\left(\frac{\mu^2}{\mu_f^2}\right) + \left(\frac{2(1 - \hat{z})}{\hat{z}} + \hat{z}(4 + 2\hat{z}^2) + \frac{2\hat{z}^4}{9}(5 + \hat{z})\right)$$

$$\times \left(\ln\left(\frac{x^2 \mu_f^2 e^{-1}}{M_H^2}\right) - 2\ln(1 - \hat{z}) \right) + \frac{2(1 - \hat{z})}{\hat{z}} - \left(\frac{4\hat{z}^4}{1 - \hat{z}} - \frac{4\hat{z}^4}{9}(5 + \hat{z})\right) \ln \hat{z} \right].$$
 (5.28b)

- No threshold logs in hard part
- Logs are factorized to SGDs and then resummed by using REGs

Nonperturbative models

> The first class of models

$$F^{\mathrm{mod}}(\omega') = M_H N_H \frac{b^b}{\Gamma(b)} \frac{\omega'^{b-1}}{\bar{\Lambda}^b} e^{-b\omega'/\bar{\Lambda}}, \quad \omega' = M_H (1/x - 1), \quad \text{Fleming, Leibovich, Mehen, 0306139}$$

Model-1: $F^{\text{mod}}(\omega')|_{\bar{\Lambda}=0.6\text{GeV},b=2}$, Model-2: $F^{\text{mod}}(\omega')|_{\bar{\Lambda}=0.6\text{GeV},b=1}$,

Model-3: $F^{\text{mod}}(\omega')|_{\bar{\Lambda}=0.6\text{GeV},b=3}$, Model-4: $F^{\text{mod}}(\omega')|_{\bar{\Lambda}=0.5\text{GeV},b=2}$,

Model-5: $F^{\text{mod}}(\omega')|_{\bar{\Lambda}=0.7\text{GeV},b=2}$,

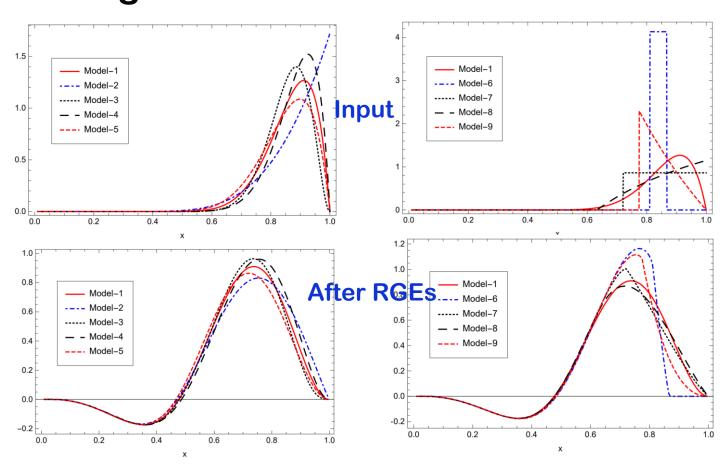
the zeroth, first and second moments are $M_H N_H, M_H N_H \bar{\Lambda}$ and $M_H N_H \bar{\Lambda}^2 (\frac{1}{\hbar} + 1)$

> The other models

Model-6:
$$4M_H N_H [\theta(w' \ge \frac{19}{40}) - \theta(w' > \frac{29}{40})],$$
 Model-8:
$$\begin{cases} M_H N_H (-\frac{50}{81}w' + \frac{10}{9}), & 0 \le w' \le \frac{9}{5}, \\ 0, & w' > \frac{9}{5}, \end{cases}$$
 Model-7:
$$\frac{5}{6}M_H N_H [\theta(w' \ge 0) - \theta(w' > \frac{6}{5})],$$
 Model-9:
$$\begin{cases} \frac{200}{81}M_H N_H w', & 0 \le w' \le \frac{9}{10}, \\ 0, & w' > \frac{9}{10}. \end{cases}$$

RGEs effects

Model dependence is significantly reduced after using RGEs



Numerical: $g \rightarrow Q\overline{Q}({}^{3}S_{1}^{[8]}) + X$

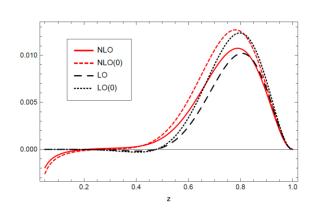
\triangleright Gluon FFs in ${}^3S_1^{[8]}$ channel

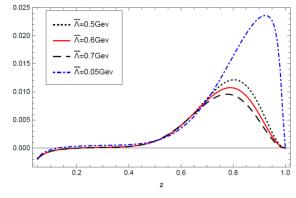
Chen, Jin, YQM, Meng, 2103.15121

 $\overline{\Lambda}$: average momentum emitted

$$D_{g\to H}(z, M_H, m_Q, M_H) = \int_z^1 \frac{dx}{x} \hat{D}_{[SS]}(\hat{z}, M_H/x, m_Q, M_H, M_H) \times F_{[SS]\to H}(x, M_H, m_Q, M_H),$$

$$D_{g\to H}^{(0)}(z, M_H, m_Q, M_H) = \int_z^1 \frac{dx}{x} \hat{D}_{[SS]}^{(0)}(\hat{z}, M_H/x, M_H, M_H) \times F_{[SS]\to H}(x, M_H, m_Q, M_H).$$





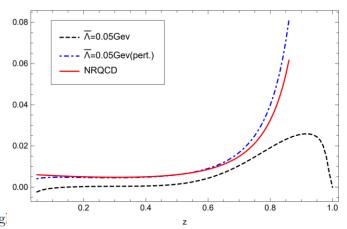


Figure 7. Left figure: Comparison of the gluon FF obtained in different approximations. Rigingure: $\bar{\Lambda}$ dependence of gluon FF at NLO.

$$R^{X}(n) \equiv \frac{\int_{0}^{1} dz z^{n} D_{g \to H}^{X}(z, M_{H}, m_{Q}, \mu)}{\int_{0}^{1} dz z^{n} D_{g \to H}(z, M_{H}, m_{Q}, \mu)},$$

$$R^{NRQCD} \approx 6$$

Summary

> NRQCD factorization: universality problem

- Different groups got different LDMEs; Inconsistent with data.
- Possible reason: high order in v^2 expansion needed

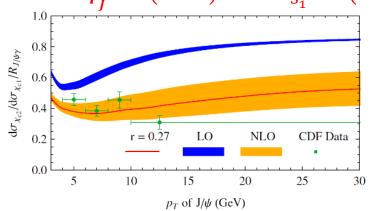
\triangleright Resummation of powers in v^2 expansion

- Soft gluon factorization: equivalent to NRQCD, but with relativistic corrections (due to kinematic effects) resummed, better convergence in \boldsymbol{v} expansion
- Phenomenological difficulties encountered in NRQCD should be restudied in the new framework
- Still lots of theoretical works to do. Stay tuned!

Achievement: χ_{cJ} production

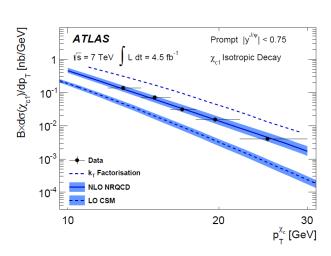
 $\nearrow \chi_{cI}$ production: $d\sigma_{\chi_{cJ}}/(2J+1) \approx d\hat{\sigma}_{3P_J^{[1]}}\langle O\left({}^3P_0^{[1]}\right)\rangle + d\hat{\sigma}_{3S_1^{[8]}}\langle O\left({}^3S_1^{[8]}\right)\rangle$

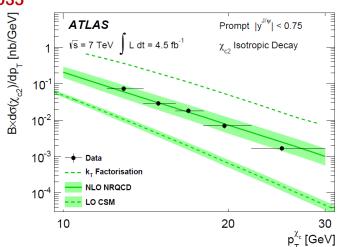
YQM, Wang, Chao, 1002.3987



> Predictions agree with new data

ATLAS, 1404.7035

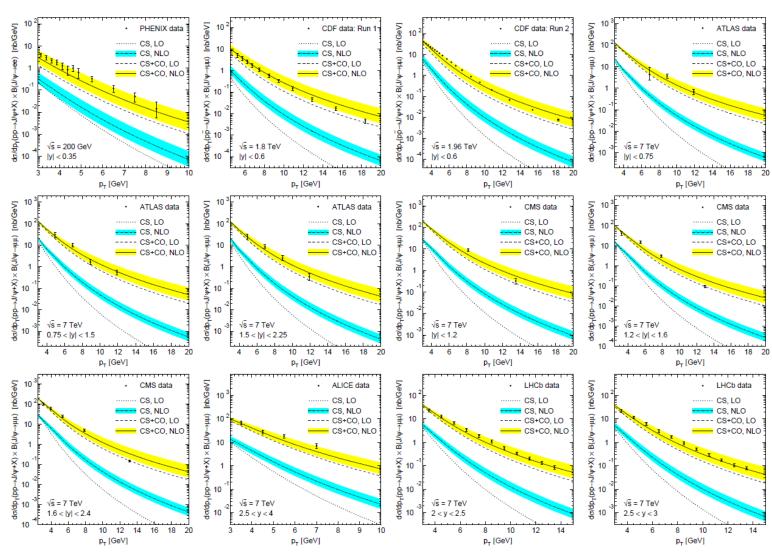




Global fit by Butenschoen and Kniehl

> NLO NRQCD V.S. RHIC, Tevatro, LHC data

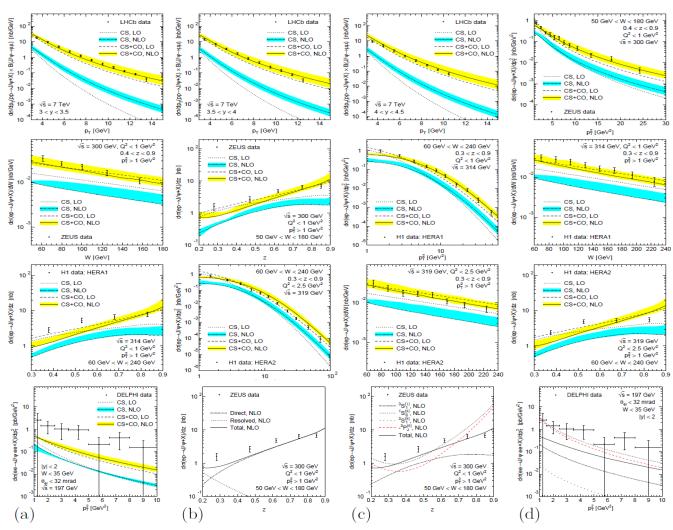
Butenschoen, Kniehl, 1105.0820



Global fit by Butenschoen and Kniehl

> NLO NRQCD V.S. LHC, HERA, LEP data

Butenschoen, Kniehl, 1105.0820



Pheno difficulty: polarization puzzle

> LO NRQCD

• Dominated by ${}^3S_1^{[8]}$, LO NRQCD predicts transversely polarized $\psi(\mathrm{nS})$ at high p_T , contradicts with Tevatron and LHC data

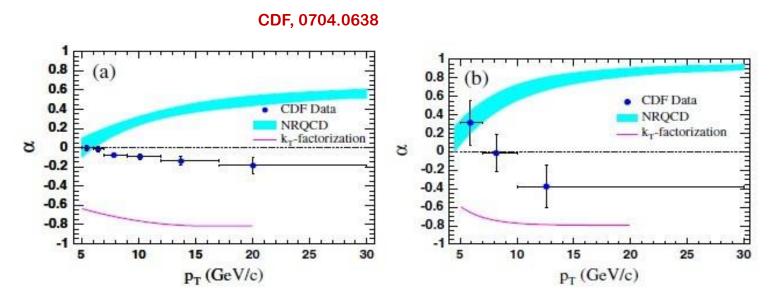
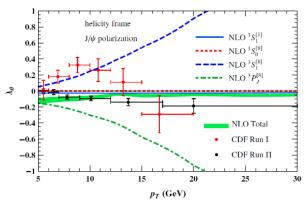


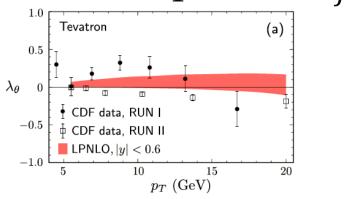
FIG. 4 (color online). Prompt polarizations as functions of p_T : (a) J/ψ and (b) $\psi(2S)$. The band (line) is the prediction from NRQCD [4] (the k_T -factorization model [9]).

Pheno difficulty: polarization puzzle

$> J/\psi$ at NLO: transverse polarization largely

canceled (<u>natural?</u>) between ${}^3S_1^{[8]}$ and ${}^3P_J^{[8]}$

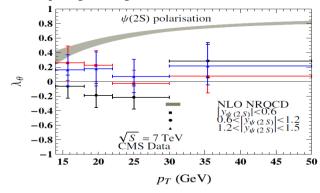


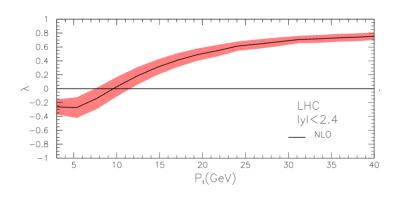


Bodwin, Chung, Kim, Lee, 1403.3612

Chao, YQM, Shao, Wang, Zhang, 1201.2675

$\triangleright \psi(2S)$: cancelation weak, hard to understand





Summary of NRQCD factorization

- > Rigorousness
 - Based on EFT of QCD: NRQCD

Nayak, Qiu, Sterman, 0509021 Bodwin, Chung, Ee, Kim, Lee, 1910.05497 Zhang, Meng, YQM, Chao, 2011.04905

- Factorization has been tested to NNLO
- Color-octet mechanism: great success in solving theoretical issues and explaining data
- > Color-octet mechanism: final-state radiation of soft gluons results in large power and log corr.
 - Should be responsible for phenomenological failures
- Soft gluon factorization: resum a dominant series of power corrections (kinematic effects) and log corrections

34/28