Near-threshold J/ψ production and J/ψ -N interactions

Astrid N. Hiller Blin ahblin ahblin ajlab.org

Physics Opportunities with Heavy Quarkonia at the EIC October 26th, 2021

Outline

- 1. What do we hope to learn from J/ψ -N interactions?
- 2. About the nucleon mass (radius)
- 3. Scattering length and bound states
- 4. The search for pentaquark resonances
- 5. An excursion to existing data so far
- 6. What we hope to see in future experiments

1. What do we hope to learn?

Heavy quarkonia interacting with nucleons

• Color van der Waals forces:

For $Q\bar{Q}$ systems, which are small on the hadronic scale, a **QCD multipole expansion** is justified in the interaction between nucleons and heavy quarkonium. The leading contribution is a dipole interaction.

- Applicable in J/ψ photoproduction close to threshold (small relative momentum in the final state).
- Attractive force might lead to nucleon/nucleus-quarkonium **bound states**. Calculations of binding energies for J/ψ range from 20 MeV down to inexistent even in large nuclei.

Heavy quarkonia interacting with nucleons

• Color van der Waals forces:

For $Q\bar{Q}$ systems, which are small on the hadronic scale, a **QCD multipole expansion** is justified in the interaction between nucleons and heavy quarkonium. The leading contribution is a dipole interaction.

- Applicable in J/ψ photoproduction close to threshold (small relative momentum in the final state).
- Attractive force might lead to nucleon/nucleus-quarkonium **bound states**. Calculations of binding energies for J/ψ range from 20 MeV down to inexistent even in large nuclei.

• Emergence of nucleon mass:

from current quark masses, kinetic/potential energy of quarks and gluons (only fraction of total mass); additionally, trace anomaly contribution from QCD energy-momentum tensor (EMT). $M_N = M_m + M_g + M_g + M_a$

• Kinetic pieces related to twist-two operators: calculable from DIS data.

Trace anomaly related to twist-four gluon condensate: near-threshold quarkonium production.

Heavy quarkonia interacting with nucleons

• Color van der Waals forces:

For $Q\bar{Q}$ systems, which are small on the hadronic scale, a **QCD multipole expansion** is justified in the interaction between nucleons and heavy quarkonium. The leading contribution is a dipole interaction.

- Applicable in J/ψ photoproduction close to threshold (small relative momentum in the final state).
- Attractive force might lead to nucleon/nucleus-quarkonium **bound states**. Calculations of binding energies for J/ψ range from 20 MeV down to inexistent even in large nuclei.

• Emergence of nucleon mass:

from current quark masses, kinetic/potential energy of quarks and gluons (only fraction of total mass); additionally, trace anomaly contribution from QCD energy-momentum tensor (EMT). $M_N = M_m + M_g + M_g + M_a$

- Kinetic pieces related to twist-two operators: calculable from DIS data.

 Trace anomaly related to twist-four gluon condensate: near-threshold quarkonium production.
- Do the quarkonium-nucleon interactions enable the appearance of pentaquark resonances?

Near-threshold J/ψ photoproduction at JLab: status

- •GlueX at Hall D: full 4π acceptance, no extrapolations needed in t dependence. Published analysis of 1D cross sections with 469 ± 22 events, ~ 2000 more events in the pipeline. [Ali et al., PRL 123 (2019) 072001]
- •CLAS12 at Hall B: about 2π acceptance, photoproduction on hydrogen and deuterium. Ongoing and planned. [E12-12-001(A); E12-11-003B]
- •SoLID/SBS at Hall A: 2π acceptance and high luminosity. To measure inclusive and exclusive electro-/photoproduction, polarization observables. [E12-12-006; LoI12-18-001 (PAC 46)]
- J/ψ -007 at Hall C: independent muon and electron decay channels. Finalized 2D photoproduction cross sections with ~4000 events, for P_c searches and proton mass radius. [E12-16-007]

2. Proton mass (radius)

Scrutinizing the nucleon mass (radius)

• The EMT fulfills $\langle p \mid T^{\alpha}_{\alpha} \mid p \rangle = 2M_N^2$. In dimensional regularization, $T^{\alpha}_{\alpha} = \frac{\beta(g)}{2g} F^{\alpha\beta}_{a} F^{a}_{\alpha\beta} + m(1 + \gamma_m) \bar{\psi} \psi$.

[Ji, PRL 74 (1995) 1071; PRD 52 (1995) 271; Front. Phys. 16 (2021) 64601]

- J/ψ production cross sections depend on gluon piece of trace anomaly, related to gravitational form factors (GFF).
- Main challenges: what is the anomaly **decomposition** into quark and gluon pieces? Are the **GFF** for each well defined?

Scrutinizing the nucleon mass (radius)

Mass anomalous dimension multiplying quark fields comes from regularization of gluon fields!

• The EMT fulfills
$$\langle p \mid T_{\alpha}^{\alpha} \mid p \rangle = 2M_{N}^{2}$$
.

In dimensional regularization, $T_{\alpha}^{\alpha} = \frac{\beta(g)}{2g} F_{\alpha}^{\alpha\beta} F_{\alpha\beta}^{a} + m(1 + (\gamma_{m}) \bar{\psi} \psi$.

[Ji, PRL 74 (1995) 1071; PRD 52 (1995) 271; Front. Phys. 16 (2021) 64601]

- J/ψ production cross sections depend on gluon piece of trace anomaly, related to gravitational form factors (GFF).
- Main challenges: what is the anomaly **decomposition** into quark and gluon pieces? Are the **GFF** for each well defined?

Mass decomposition in the proton rest frame

$$M_N = M_m + M_q + M_g + M_a$$

[Ji, PRD 52 (1995) 271;
Hatta and Yang, PRD 98 (2018) 074003]

$$M_m = \frac{4 + \gamma_m}{4(1 + \gamma_m)} b \, m_p$$

$$M_q = \frac{3}{4} \left(a - \frac{b}{1 + \gamma_m} \right) m_p$$

$$M_g = \frac{3}{4} \left(1 - a \right) m_p$$

$$M_a = \frac{1}{4} \left(1 - b \right) m_p$$

Mass decomposition in the proton rest frame

$$M_N = M_m + M_q + M_g + M_a$$

[Ji, PRD 52 (1995) 271;
Hatta and Yang, PRD 98 (2018) 074003]

$$M_m = \frac{4 + \gamma_m}{4(1 + \gamma_m)} b m_p$$

$$M_q = \frac{3}{4} \left(a - \frac{b}{1 + \gamma_m} \right) m_p$$

$$M_g = \frac{3}{4} (1 - a) \, m_p$$

$$M_a = \frac{1}{4} \left(1 - b \right) m_p$$

- a and b from lattice QCD or extracted from experiment.
- M_a has not been determined yet: b to be assessed in J/ψ production close to threshold, which is sensitive to $\langle p \mid F^2 \mid p' \rangle$.
- Many approaches in literature: QCD factorization, lattice QCD, with assumptions of holography, vector-meson dominance, ...

[Hatta et al., JHEP 12 (2018) 008; Hatta and Yang, PRD 98 (2018) 074003; Hatta et al., PRD 100 (2019) 014032; Shanahan and Detmold, PRD 99 (2019) 014511; Sugiura et al., JPS Conf. Proc. 26 (2019) 031015; Boussarie and Hatta, PRD 101 (2020) 114004; Guo et al., PRD 103 (2021) 096010; Lorcé et al., 2109.11785 [hep-ph]; Sun et al., PLB 822 (2021) 136655]

Vector-meson dominance (VMD)

• J/ψ elastic scattering is estimated from and directly related to J/ψ photoproduction.

$$\frac{d\sigma}{dt}(\gamma p \to J/\psi p) = \frac{3\Gamma(J/\psi \to e^+e^-)}{\alpha m_{J/\psi}} \frac{d\sigma}{dt} (J/\psi p \to J/\psi p) \frac{q_{J/\psi p}^2}{q_{\gamma p}^2} \frac{g_{J/\psi}^2(m_{J/\psi^2})}{g_{J\psi}^2(0)}$$

- VMD is an extremely good approximation for light mesons.
- Heavy mesons: large gap between measured photoproduction ($Q^2 = 0$) and on-shell VMD coupling ($Q^2 = -m_w^2$). It has been shown that kinematic corrections and appropriate Q^2 dependence are needed. Leads to scaling up of $J/\psi p \rightarrow J\psi p$ cross section: therefore, corrections to VMD limited by data! [Barger and Phillips, PL 58B (1975) 433]

Excursion: alternative production mechanism

•Open charm exchanges: motivated by proximity between $\Lambda_c^+\bar{D}^0$ and $J/\psi p$ thresholds and larger $\gamma p \to c\bar{c}X$ than $\gamma p \to J/\psi p$ cross sections. [Du et al., EPJ C80 (2020) 1053]

• Cusps would be seen in data — possibly visible at GlueX? Confirm in open-charm photoproduction.

• Would obscure the relation between J/ψ photoproduction and trace anomaly contribution to proton mass.

Mass radius

- Charge radius from spatial distribution of quarks: form factors in electron scattering experiments.
- •Gluon distributions cannot be assessed this way: mass radius from GFF in J/ψ photoproduction! In the non-relativistic limit:

$$\left\langle R_m \right\rangle = \frac{6}{m_p} \left. \frac{dG}{dt} \right|_{t=0}$$
, and G approximately given by the EMT trace T.

Then, the radius is obtainable from
$$\frac{d\sigma_{\gamma p \to J/\psi p}}{dt} \propto \left| \left\langle p' \mid T \mid p \right\rangle \right|^2$$
.

A. N. Hiller Blin

[Kharzeev, PRD 104 (2021) 054015; Wang et al., PRD 103 (2021) L091501; Mamo and Zahed, PRD 101 (2020) 086003; PRD 103 (2021) 094010]

3. Bound states?

Calculating the scattering length

- •Broad range of binding energies (including none) found in literature: bound states correspond to sufficiently large values of scattering length.

 [Luke et al., PLB 288 (1992) 355; Brodsky and Miller, PLB 412 (1997) 125;
 Beane et al., PRD 91 (2015) 114503; Gryniuk and Vanderhaeghen, PRD 94 (2016) 074001;
 Sugiura et al., JPS Conf. Proc. 26 (2019) 031015; Skerbis and Prelovsek, PRD 99 (2019) 094505]
- Scattering length from cross section at threshold: $\sigma_{J/\psi p} = 4\pi a_{J/\psi p}^2$. Sign fixed e.g. in dispersion relations (DR).
- •Imaginary part of $J/\psi p$ scattering amplitude can be related to elastic and inelastic $J/\psi p$ cross sections, using $\gamma p \to J/\psi p$ and $\gamma p \to c\bar{c}X$ data and VMD. Real part from once-subtracted DR. [Gryniuk and Vanderhaeghen, PRD 94 (2016) 074001]

Assessed quantities

• Scattering length:

$$a_{J/\psi p} = \frac{1}{8\pi (m_p + m_{J/\psi})} \mathcal{M}_{J/\psi p \to J/\psi p} (\nu = \nu_{el}) = (0.046 \pm 0.005) \text{ fm}$$

Range in literature: up to 0.37 fm.

$$B_{J/\psi} \approx 3 \text{ MeV}$$

- Interference in l^+l^- reconstruction with competing Bethe-Heitler mechanism leads to **forward-backward asymmetry** in $\gamma p \rightarrow e^+e^-p$ around the J/ψ peak.
- Asymmetry sensitive to $a_{\psi p}$, approximately linearly: promising for refined experimental extraction!

4. Oh pentaquark, where aret thou?

Exotic baryon candidates

• In 2015, exotic-like structures in the $J/\psi p$ channel were found. [Aaij et al. [LHCb], PRL 115 (2015) 072001; Aaij et al. [LHCb], PRL 122 (2019) 222001]

A. N. Hiller Blin

Heavy quarkonia @ EIC

2021-10-26

Possible interpretations

- Compact 5-quark states.
- Weakly-bound $\bar{D}^*\Sigma_c^{(*)}$ molecule.
- Kinematic final-state rescattering effects (triangle singularities).
- Confirm resonant nature with photoproduction.

```
[Wang et al., PRD 92 (2015) 034022;
ANHB et al., Phys. Rev. D 94 (2016) 034002;
Huang et al., Chin.Phys.C 40 (2016) 124104;
LoI12-18-001 (PAC 46);
Wang et al., PRD 99 (2019) 114007;
Winney et al., PRD 100 (2019) 034019;
Wu et al., PRC 100 (2019) 035206;
Cao and Dai, PRD 100 (2019) 054033;
Cao et al., PRD 101 (2020) 074010]
```

• Moving forward, measurement of **polarization observables** (sensitive even to broader and overlapping signals) and **open-charm** production might be most promising.

5. JLab data

GlueX data

•GlueX data showed that 2-gluon exchange alone is not sufficient to describe J/ψ production at threshold. [Ali et al., PRL 123 (2019) 072001; Brodsky et al., PLB 498 (2001) 23]

• Set upper limits to $\sigma(\gamma p \to P_c) \times \mathcal{B}(P_c \to J/\psi p)$, model-dependent limits to $\mathcal{B}(P_c \to J/\psi p) < 2.0\%$. [Hiller Blin et al., PRD 94 (2016) 034002; Winney et al., PRD 100 (2019) 034019]

• Excludes predictions of hadrocharmonium model, still allows for hadronic molecule. Challenges several theory models. [Eides et al., EPJ C78 (2018) 36; Eides and Petrov, PRD 98 (2018) 114037; Eides et al., MPL A35 (2020) 2050151]

•New results expected based on 2200 J/ψ events.

Studies based on GlueX data

- t dependence for extracting trace anomaly contribution to nucleon mass (radius) and gravitational form factors (GFF): $R_m \sim 0.5-0.6$ fm. [Kharzeev, PRD 104 (2021) 054015; Wang et al., PRD 103 (2021) L091501; Mamo and Zahed, PRD 101 (2020) 086003; PRD 103 (2021) 094010; Guo et al., PRD 103 (2021) 096010; Kou et al., 2104.12962 [hep-ph]; Sun et al., PLB 822 (2021) 136655; Wang et al., EPJ C80 (2020) 507]
- Comparison of scattering lengths extractions within different models: [Strakovsky et al., PRC 101 (2020) 042201; Pentchev and Strakovsky, EPJ A57 (2021) 56] $|a_{J/\psi p}| \sim 0.003...0.025$ fm (upper value from update to [Gryniuk and Vanderhaeghen, PRD 94 (2016) 074001]).
- Global dipole fit for extraction of two-gluon exchange mass and tests of two-gluon exchange models. [Pentchev, JPS Conf.Proc. 26 (2019) 021022; Zeng et al., EPJ C80 (2020) 1027]

J/ψ -007 data [See S. Joosten's talk at DNP2021]

• Upper limit for P_c cross section almost order of magnitude more stringent than GlueX limit!

J/ψ -007 data [See S. Joosten's talk at DNP2021]

• Upper limit for P_c cross section almost order of magnitude more stringent than GlueX limit!

• Mass radii extracted from t dependence in each energy bin, by a dipole fit in the holographic approach. [Mamo and Zahed, PRD 101 (2020) 086003]

6. EIC and future directions

The unique possibilities of electron-ion colliders

- Lepton-nucleon/nucleus collisions are great quarkonium laboratories: cleaner than hadronic collisions, richer than e^+e^- annihilation.
- High luminosities at the EIC allow for multi-differential exploration of kinematic regimes. This might disentangle production mechanisms.
- J/ψ and Υ production to bring further insight into proton mass decomposition and binding energies. The larger bottomonium mass leads to negligible uncertainty from higher order corrections. [Anderle et al., EicC, Front.Phys.(Beijing) 16 (2021) 64701; Abdul Khalek et al., EIC Yellow Report, 2103.05419 [physics.ins-det]; Joosten, 1803.08615 [hep-ph]]
- Hidden-bottom pentaquark searches and hidden-charm searches in open-charm decays. [Cao and Dai, PRD 100 (2019) 054033]
- Leptoproduction: large momentum transfer near threshold can be treated perturbatively! [Boussarie and Hatta, PRD 101 (2020) 114004; Sun et al., PLB 822 (2021) 136655]

Summary

- •Photo- and leptoproduction of heavy quarkonium off nucleon targets can give insight about **gluon distributions** in the nucleon, **trace anomaly contribution** to the proton mass and **mass radius**.
- It can give insight into the binding energy of nucleon-heavy-quarkonium states.
- Might shed light onto the nature of LHCb pentaquarks and enable independent confirmation.
- •GlueX and J/ψ -007 data already led to great advances in the field.
- The EIC is crucial and ideal for further studies.

Dispersion relations

• Imaginary part:

$$\mathcal{SM}_{J/\psi p o J/\psi p} \propto \sigma_{J/\psi p o X}, \qquad \sigma(J/\psi p o J/\psi p, c\bar{c}X) \propto \left(\frac{\nu}{\nu_{\text{el,inel}}}\right)^{\text{el,inel}} \left(1 - \frac{\nu_{\text{el,inel}}}{\nu}\right)^{\nu_{\text{el,inel}}}$$

• Real part from (once-subtracted) dispersion relation:

$$\mathfrak{R} \mathcal{M}_{J/\psi p \to J/\psi p}(\nu) = \mathcal{M}_{J/\psi p \to J/\psi p}(0) + \frac{2\nu^2}{\pi} \int_{\nu_{\text{el}}}^{\infty} d\nu' \frac{\mathfrak{F} \mathcal{M}_{J/\psi p \to J/\psi p}(\nu')}{\nu'(\nu'^2 - \nu^2)}$$

$$\frac{d\sigma}{dt} \bigg|_{t=0} (J/\psi p \to J/\psi p) \propto |\mathcal{M}_{J/\psi p}|^2$$

Subtraction constant: model dependent/from lattice QCD/fitted to data with VMD assumption.