J/ψ polarization at EIC within the NRCD approach and matching issue

In collaboration with: U. D'Alesio, F. Murgia, C. Pisano, R. Sangem

Speaker: Luca Maxia

Università di Cagliari - INFN CA

Onia@EIC

Date: 26/10/2021

OUTLINE

 Quarkonium polarization within NRQCD introduction
 parameterization of the cross section
 TMD factorization and matching issue

• EIC preliminary prediction in the collinear region

TRANSVERSE MOMENTUM DISTRIBUTIONS (TMDs)

Gluon TMDs are still poorly known

Different processes could be use to probe gluon TMD

quarkonium production

D production (open charm)

pions at mid y

di-jet production

<u>gluon</u> polar. proton polar.	Unpolarized	Circular	Linear
Unpolarized	f_1		h_1^\perp
Longitudinal		g_{1L}	h_{1L}^{\perp}
Transverse	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Leading twist TMDs

INFN

Mulders Rodriguez, PRD 63 (2001)

TMD FACTORIZATION

TMD factorization is formally proven only for few processes

Collins, Cambridge University Press (2011)

INFN

QUARKONIUM POLARIZATION

By measuring the polarization we can understand the angular momentum state in which the particle is produced

Test of hadronization models (CSM vs NRQCD vs ...?)

```
Color Singlet Model
(CSM)
```

Quarkonium produced perturbatively as *color-neutral* $Q\bar{Q}$ -pair

Baier Ruckl, Z.Phys.C 19 (1983)

Berger Jones, PRD 23 (1981)

Non-relativistic QCD approach (NRQCD)

Quarkonium produced through colored $Q\overline{Q}$ -pair that evolves nonpertubatively \longrightarrow LDME

Bodwin Braaten Lepage, PRD 55 (1997)

Cho Leibovich, PRD 53 (1996)

QUARKONIUM POLARIZATION IN SIDIS

J/ ψ polarization is studied in the quarkonium rest frame $\gamma^*(q) + p(P) \rightarrow J/\psi(P_\psi) + X$

Different choices for the reference frame

- GJ Gottfried-Jackson frame
- CS *Collins-Soper* frame
- HX *Helicity* frame
- TF *Target* frame

Frames are related by a rotation around Y-axis

ANGULAR STRUCTURE OF THE CROSS SECTION

 J/ψ polarization is accessed by the angular distribution of its decay products

 $J/\psi \to l^+ l^-$

Faccioli Lourenço Seixas Wöhri, EPJC 69 (2010)

SIDIS cross section is parameterized as

 $d\sigma \propto \mathcal{W}_{T}(1 + \cos^{2}\theta) + \mathcal{W}_{L}(1 - \cos^{2}\theta) + \mathcal{W}_{\Delta} \sin 2\theta \cos \phi + \mathcal{W}_{\Delta\Delta} \sin^{2}\theta \cos 2\phi$ with $\Omega(\theta, \phi)$ solid angle of l^{+} Boer Vogelsang, PRD 74 (2006) The parameterization could be obtained from model independent arguments Hermiticity Parity conservation Gauge invariance

J/ψ POLARIZATION WITHIN NRQCD

In the NRQCD approach there is a double expansion: α_s and v

NRQCD symmetries allow interference among states with same L and S

 $\mathcal{P} = T$, $L \gamma^*$ polarization

Beneke Krämer Vänttinen, PRD 57 (1998)

J/ψ polarization at small q_T

4 frame independent ${\mathcal W}$ helicity structure functions survive

Neglecting smearing effects:

$$\mathcal{W}_{T}^{\perp} = \widetilde{w}_{T}^{\perp} f_{1}(x, \boldsymbol{q}_{T}^{2}) \qquad \mathcal{W}_{L}^{\perp} = \widetilde{w}_{L}^{\perp} f_{1}(x, \boldsymbol{q}_{T}^{2})
\mathcal{W}_{L}^{\parallel} = \widetilde{w}_{L}^{\parallel} f_{1}(x, \boldsymbol{q}_{T}^{2}) \qquad \mathcal{W}_{\Delta\Delta}^{\perp} = \widetilde{w}_{\Delta\Delta}^{\perp} h_{1}^{\perp}(x, \boldsymbol{q}_{T}^{2})
proportional to < \mathcal{O}_{8}[{}^{3}P_{0}] > \qquad \text{access to}$$

D'Alesio LM Murgia Pisano Sangem, arXiv:2110.07529

INFŃ

FACTORIZATION SCHEMES

In the J/ψ rest frame the virtual photon has a transverse momentum (TM) $m{q}_T$

MATCHING AND SMEARING EFFECTS

EIC: COLLINEAR REGION PRELIMINARY RESULTS

Experimentally a different parameterization is usually adopted for $d\sigma \equiv \frac{d\sigma}{dx_B dy dz d^4 P_{\psi} d\Omega}$ $d\sigma \propto 1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi$ $\lambda = \frac{W_T - W_L}{W_T + W_L} \qquad \mu = \frac{W_{\Delta}}{W_T + W_L} \qquad \nu = \frac{2W_{\Delta\Delta}}{W_T + W_L} \qquad \text{where} \qquad \begin{array}{l} \lambda = +1 & \longrightarrow & \text{transverse} \\ \lambda = -1 & \longrightarrow & \text{longitudinal} \end{array}$ $\longrightarrow & \text{easier to access} \end{array}$

Next: focus on λ in CSM and NRQCD at scale $\mu_0/2 < \mu < 2\mu_0$ $\mu_0 = \sqrt{M_{\psi}^2 + Q^2}$ NRQCD with different LDME choices

C12 Chao Ma Shao Wang Zhang, PRL 108 (2012) G13 Gong Wan Wang Zhang, PRL 110 (2013) BK11 Butenschoen Kniehl, PRD 84 (2011) Hinclude low P_T unpolarized data

Luca Maxia (Università di Cagliari - INFN CA)

ÍNFŃ

PREDICTIONS FOR EIC

INFŃ

CONCLUSIONS

- Study of J/ψ polarization states in different frames at EIC
- Access to gluon TMD PDFs
- In TMD region $\mathcal{W}_{\Delta\Delta}^{\perp}$ is related to the linearly polarized gluon distribution

Proper shape functions are necessary to provide correct expressions in the $^{\bullet}$ intermediate q_T region

Preliminary predictions for EIC in the collinear approach already highlight the importance of precise polarization data

INFŃ

Thanks for the attention

