Thermal Neutron Scattering Research – Bettis Perspective

Michael L. Zerkle Bettis Atomic Power Laboratory

Nuclear Data Advisory Group (NDAG) Meeting BNL, November 4, 2015

History

- Thermal neutron scattering was active area of applied physics research in 1950s-1960s
- AEC Reactor Development Division sponsored a sizable thermal neutron scattering research program at General Atomics from 1960-1970
 - Integral (analytical) research program to develop theoretical TSL evaluations and processing tools (evaluations & analytical methods tightly coupled)
 - Central Force Models fit to experimental material structural, mechanical, thermodynamic properties
 - Differential research program to validate theoretical evaluations
 - Measurements used GA LINAC (best available facility at the time)
 - Experimental TSL evaluations not pursued by GA inferior approach & impractical
- GA research program/strategy very **successful** and **productive**
 - Produced all ENDF TSLs until the adoption of modified Mattes & Keinert H-H₂O TSL in ENDF/B-VII.0
- No significant technical improvements to analytical methods over intervening 55 years

Recent History

- In early 2000s Bettis and NCSU independently recognized computational material science tools have matured and can be used to develop theoretical TSLs from first principles
- Bettis funded integration of VASP (density functional theory) and PHONON (lattice dynamics) codes into MedeA computational material science framework
 - Bettis developed theoretical TSLs for metal hydrides for internal use in classified applications
- NCSU first organization outside NR Program to use VASP/PHONON to generate theoretical TSLs from first principles
 - 2011 NCSU graphite differential scattering measurements at SNS
- NR/NCSP collaboration begun in FY2014-FY2015
 - NCSU theoretical TSL development (Bettis matching funding)
 - RPI MD simulations and SNS measurements (NR pass through)

Lessons Learned

- Theoretically developed TSLs preferred evaluation strategy
 - DFT/lattice dynamics (VASP/PHONON) approach suitable for solid moderators for which incoherent approximation is appropriate
 - Metal hydrides, ice, ...
 - MD simulations suitable for liquid and amorphous moderators
 - H₂O, Lucite, CH₂, ...
 - Available force fields sufficient for organic and inorganic material evaluated to date
 - Relaxation of incoherent approximation will extend DFT/lattice dynamics approach to include solid moderators exhibiting interference effects
 - Polycrystalline materials (Be, BeO, Graphite, UO₂, ...)
 - Bettis independently pursuing modifications to PHONON to support coherent interference calculations
- Validation strategy
 - Validation using SNS differential neutron scattering measurements are practical
 - Can be used directly for liquids and amorphous materials
 - Integrate over alpha for apples/apples comparison of TSLs using the incoherent approximation
 - Can be used directly once incoherent approximation is relaxed
 - Supplement using neutron transmission, thermophysical property measurements, and benchmark testing

Lessons Learned (Continued)

- Experimentally developed TSLs not practical
 - Cost/difficulty to adequately sample S(α,β) in α,β space needed for most applications
 - Concerns about ability to measure all relevant conditions
 - Concerns about experimental resolution

Bettis Recommended Strategy

Follow proven GA development strategy

- Develop TSL evaluations based on theory
 - DFT/lattice dynamics for polycrystalline materials
 - MD simulations for liquids and amorphous materials
- Validate theoretical TSL evaluations via measurements
 - Differential neutron scattering (SNS or similar facilities)
 - Neutron transmission (RPI or similar facilities)
 - Thermophysical properties (heat capacity, enthalpy, entropy, ...)
 - Integral experiment benchmarks (when available)
- Improve analytical tools to remove unnecessary approximations
 - Generalize elastic scattering treatment to any crystal structure
 - Remove incoherent, cubic, and Gaussian approximations
 - Add support for natural input format from MD simulations
 - Covariance data support

When Are We Done

- Updated analytical methods to relax unnecessary approximations
 - Need to refresh after 55 years of inactivity
- Updated TSL evaluations in ENDF/B
 - Important to criticality safety
 - Important to reactor design
- Trained cadre of professionals who can continue progress in this area for another decade or two
- NCSP not in this alone, NR has mutual interest
- NR providing support
 - Matching funding for theoretical TSL and analytical methods work by NCSU (Bettis)
 - Facilitating MD simulation and SNS measurements by RPI (NR pass through)

Coming Attractions

- Bettis working to provide independently developed TSL evaluations to NNDC in FY2016
 - Yttrium Hydride (YH₂)
 - Hexagonal Ice
- Bettis considering independent development of additional TSLs in out years
 - ZrH₂ (gamma, delta, epsilon phases)
 - H-UH₃
 - H-PuH₂
- Critical mass and stability in TSL development community will provide long-term benefits to NCSP and NR

