Update on Thermal Scattering Research at RPI

Report to NDAG

Y. Danon, E. Liu, K. Ramic, C. Wendorff *Rensselaer Polytechnic Institute, Troy, NY, 12180*

NDAG meeting, November 4, 2015 at BNL

Thermal Scattering Overview

- Preformed measurements at SNS
 - SEQUOIA
 - Water
 - Medium Density Polyethylene (MDPE)
 - ARCS
 - High Density Polyethylene (HDPE) 295 °K and 5 °K
 - Quartz (SiO₂) at 20, 300 550, 600 °C
 - VISION (measures $S(\omega)$)
 - Lucite, Lexan, Polyethylene at 5 °K and 295 °K
- The double differential scattering data (DDSD) can be used to benchmark thermal scattering evaluations
- Method to generate $S(\alpha,\beta)$ from the experimental data are under development:
 - 1. Convert the data $(S(Q,\omega))$ to phonon spectrum (use low values of Q to limit multiple phonon scattering)
 - 2. Remove the elastic peak from the DDSD and convert the inelastic part directly to $S(\alpha,\beta)$
- Developed capabilities to use LAMMPS code to calculate the phonon spectrum and scattering kernel.

Scattering from Water

- For 160 meV incident energy where older RPI data exists:
 - The SNS experimental data is in agreement with the older RPI data
 - The simulation is in agreement with experiments
- For lower incident energy (55 meV) the simulation shows structure that is not visible in the data

ARCS vs SEQUOIA

- 250 meV incident energy
- ARCS shows slightly better energy resolution compared to SEQUOIA
 - ARCS sample: CH₂ Sheets
 - SEQUOIA sample: CH₂
 powder
- Sheets allow for coherent elastic scattering

New Raw Experimental Data

- Polyethylene using ARCS-Wide Angle Spectrometer at SNS
- Low temperature reveals the vibrational/rotational modes

Phonon spectrum from measured S(Q,E)

- Low temperature measurements are essential in order to resolve the structure.
- Convert the measured S(Q,E) data for phonon spectrum using the SNS DAVE code:

$$S(Q,E) = \frac{\hbar^2 Q^2}{6ME} \exp(-\langle u^2 \rangle Q^2) G(E)[n(E,T)+1]$$

G(E) - generalized phonon density-of-states(GDOS),

Q - wave vector transfer,

S(Q,E) - structure dynamics factor,

M - mass of the atom,

 $\langle u^2 \rangle$ - mean square displacement.

Rensselaer

$$n(E,T) = \frac{1}{\exp\left(\frac{E}{k_B T}\right) - 1}$$

Example for HDPE Experiment Normalized GDOS

- The phonon spectrum was processed with NJOY 2012
- The experimental response simulated with MCNP 6
- The agreement with the experiment is improved

Example for HDPE other angles Experiment Normalized GDOS

- Similar improvements
- Other incident energies and angles available

Polyethylene Total Cross Section

- The experimentally derived phonon spectrum is in good agreement with the total cross section measurement.
- The Experimental vs theory normalized measurement give slightly different results
 - Normalization to theoretical GDOS give better results (but this might be a unique case).

Theoretical GDOS

• Use theory to generate GDOS and use the peak rations to adjust the experimentally derived GDOS

Example for HDPE Theory Normalized GDOS

• Better agreement with total cross section but poorer agreement with double differential cross section.

Example for HDPE other angles Theory Normalized GDOS

• Better agreement with total cross section but poorer agreement with double differential cross section.

ARCS Quartz Crystal

- SiO₂ was measured at multiple thicknesses
 - 0.3175 cm and 0.635 cm (1/8th and 1/4th inches)
 - Temperatures: 20° C, 300° C, 550° C, 600° C
- Experiment and simulation based on ENDF/B-VII.1 are not in good agreement
 - Are we measuring the same material that was evaluated?
- Preliminary experimental GDOS looks promising.

Summary

Measurements (at SNS)

- Difficult to get beam time but possible.
- Completed for H₂O, Polyethylene, Quartz, (Lucite, Lexan, Polyethylene on VISION)

• Thermal double differential data can be used:

- To validate thermal scattering evaluations
- To improve thermal scattering evaluations

Two methods for experiment based evaluations

- 1. Derive phonon spectrum from double differential scattering experiment
 - Measurements at 5 K were helpful
- 2. Direct conversion of measurement to $S(\alpha,\beta)$ is still under development
- Need accurate total cross sections (can be done at RPI)
- Need to complete evaluations for all measured materials and perform critical benchmark calculations.

