US National Nuclear Data Week 2015 November 2 – 6, 2015 • Brookhaven National Laboratory, Upton, NY, USA

Thermal Scattering Law Data Generation and Validation In the 21st Century

Ayman I. Hawari

Nuclear Reactor Program Department of Nuclear Engineering North Carolina State University Raleigh, North Carolina, USA

Acknowledgement

Past and current undergraduate and graduate students and postdocs at North Carolina State University

Collaboration with LLNL and Bettis labs
 Funding by the NCSP and NR programs

Vision

Establish a predictive and approximation free approach for generating the needed data (i.e., TSL) to describe the energy exchange of thermal neutrons in matter

Initiated in 2000/2001

Various applications:

- Nuclear criticality safety
- Nuclear reactor design
- Neutron beam spectral shaping (i.e., filtering)
- Neutron source (cold, ultracold, etc.) characterization

Methods

S(α,β) is a material property can be calculated very accurately!

Several approaches can be used to extract the fundamental information for calculating the scattering law and eventually the cross sections

- Empirical atomic force analysis combined with dynamical matrix calculations
 - □ Basis of current ENDF/B libraries
- Ab initio Quantum (DFT) methods combined with dynamical matrix calculations
- Molecular Dynamics (classical MD or ab initio) methods combined with correlation function analysis

NC STATE UNIVERSITY

DFT Based

MD Based

Merge both into the DFT based Ab Initio MD approach

NCSP Program (with NR)

Appendix B Nuclear Data

Priority Needs */ Additional Needs	Thermal scattering (BeO, HF, D ₂ O, SiO ₂ , CH ₂ , C ₂ F ₄ , C ₅ O ₂ H ₈ , etc.), ²³⁹ Pu, Cr, ²³⁷ Np, Pb, ⁵⁵ Mn, Ti, ²⁴⁰ Pu / ²³³ U, Th, Be, ⁵¹ V, Zr, F, K, Ca, Mo, Na, La
Completed Evaluations (FY)	Minor Actinides (13), SiO_2 (12), $55Mn$ (12), $180,128,183,184,186W$ (14)

Examples - Materials Studied at NCSU

- **\Box** Lucite (C₅O₂H₈, contributed to NNDC/ENDF, ANS 2015)
- Polyethylene (CH₂)
 - Support criticality safety applications
- Silicon dioxide (contributed to NNDC/ENDF, PHYSOR 2008, ANS 2011, NDS 2014)
 - Support criticality safety applications
- Silicon carbide (contributed to NNDC/ENDF, ANS 2013)
 Support advanced fuel cycle applications
- Graphite, Beryllium (PHYSOR 2004 & 2008, NDS 2014, PHYSOR 2016), BeO (unpublished)
 - Treatment of nuclear graphite (porous system)
 - Including coherent inelastic for both graphite and beryllium
- uranium-zirconium hydride, calcium hydride, thorium hydride, (PHYSOR 2004), uranium dioxide, uranium silicide
- □ Sapphire and bismuth (PHYSOR 2006)
 - Thermal neutron filters
- □ Solid methane (predictive analysis AccApp 2011)

Lucite $(C_5O_2H_8)$

Polyethylene (CH₂) System

- Systems of multiple polymer chains are needed to account for inter-chain interactions.
- Simulated 20 polymer chains, each 200 monomers long, 24,000 atoms.

Polyethylene (CH₂)

TSL Data Evaluation Path Forward

Simulate/Calculate

Generate TSL libraries (very efficient)

- Support applications
- Support design and interpretation of validation and benchmark experiments

Capture variations in system conditions

Validate

Selected experiments

Create next generation tools

TSL and cross section calculations

Take advantage of the wealth of information available through modern atomistic modeling techniques

Uncertainty quantification

Graphite Types

Ideal Graphite Density = 2.25 g/cm³

Nuclear Graphite Density = 1.5 – 1.8 g/cm³

Graphite

Graphite

Targeted Experiments

Molecular Dynamics Models

Graphite

Graphite

Graphite Scattering Law

Holistic Approach Ab Initio Molecular Dynamics

Be – HCP (P6₃/mmc) a=2.2856 (2.27 AIMD) c=3.5832 (3.55 AIMD) VASP – AIMD 5x5x5 supercell GGA-PAW 3x3x3 k-mesh

- Fermi 'smearing' of electronic structure occupation
- 350eV Plane-wave cut-off
- 300 K under NVE conditions

Accepted PHYSOR 2016

First Look Liquid FLiBe

MD simulations combined with analysis to extract of the TSL data

Accepted PHYSOR 2016

Summary

Developed a modern approach for thermal neutron cross section calculations based on the use of atomistic simulations

- Ab initio lattice dynamics
- Molecular dynamics (ab initio and classical)
- □ The approach is predictive
 - New materials
 - All states of matter (solid, liquid, gas)
 - Imperfect structure
- Coupling modern computations with targeted validation experiments should address all TSL data needs