ORNL EVALUATION REPORT

M.T. Pigni, K.H. Guber, V. Sobes, D. Wiarda, G. Arbanas, M.E. Dunn

Oak Ridge National Laboratory Oak Ridge, TN

L.C. Leal

IRSN Fontenay-aux-Roses, 92260, France

CSEWG Meeting – Cross Section Session Brookhaven National Laboratory November 2015

Outline

- Nuclear Data Evaluation Overview
- 183,182,184,186**W** (Pigni/Leal) :
- 63,65**Cu** (Sobes) .
- ⁴⁰Ca
- ^{17,18}O(**α**,n)
- ¹⁶O,⁵⁶Fe,²³⁵U,²³⁹Pu

- - (Pigni)
 - (Pigni)
 - (Leal)

- completed
- completed
- on going

.

- on going
- on going

Nuclear Data Evaluation Status Overview

Resolved Resonance Region (RRR) Cross Section Evaluations

No.	Nucleus (I [≖])	$E_{\min} - E_{\max}^{ORNL} (E_{\max}^{existing})$	Method	No. Levels ^(*)	J ₀	J ₁	Evaluator
1 🗸	¹⁸² W(0 ⁺)	10⁻⁵ eV–10 (5.0) keV	RM	306	171	135	L. C. Leal
2 🗸	¹⁸³ W(1/2⁻)	10 ⁻⁵ eV–5 (2.2) keV	RM	387	346	21	M. T. Pigni
3 🗸	¹⁸⁴ W(0 ⁺)	10 ⁻⁵ eV–10 (4.0) keV	RM	178	94	84	L. C. Leal
4 🗸	¹⁸⁶ W(0 ⁺)	10⁻⁵ eV–10 (8.3) keV	RM	169	95	74	L. C. Leal
5 🗸	⁶³ Cu(3/2⁻)	10 ⁻⁵ eV-300 (100) keV	RM	1093	545	548	V. Sobes
6 🗸	⁶⁵ Cu(3/2⁻)	10 ⁻⁵ eV-300 (100) keV	RM	952	337	615	V. Sobes

Nuclear Data Evaluation Status Overview

Resolved Resonance Region (RRR) Cross Section Evaluations

No.	Nucleus (I^{π})	$E_{\min} - E_{\max}^{ORNL}(E_{\max}^{existing})$	Method	No. Levels	Evaluator
1 x	⁴⁰ Ca (0 ⁺)	10 ⁻⁵ eV–1.0 (0.5) MeV	RM	On going	M. T. Pigni
2 X	α+ ¹⁷ O(5/2 ⁺)	10 ⁻⁵ eV–5.0 MeV	RM	On going	M. T. Pigni
3 X	α+ ¹⁸ O(0 ⁺)	10 ⁻⁵ eV–5.0 MeV	RM	On going	M. T. Pigni
4 x	¹⁶ O(0 ⁺)	10 ⁻⁵ eV–6.1 MeV	RM	On going	L. C. Leal
5 X	⁵⁶ Fe(0 ⁺)	10 ⁻⁵ eV–2 MeV	RM	On going	L. C. Leal
6 X	²³⁵ U(7/2⁻)	10 ⁻⁵ eV–2.25 keV	RM	On going	L. C. Leal
7 X	²³⁹ Pu(1/2 ⁺)	10 ⁻⁵ eV–4 keV (2)	RM	On going	L. C. Leal

Computer Code SAMMY

- Used for analysis of *neutron* and *charged-particle* cross section data
- Uses Bayes' method to find parameter values
- Uses R-matrix formalism in the Reich-Moore approximation
- Generates cross section covariance matrix and sensitivity parameters for RRR

 Transmission and capture cross section measurements performed at Geel for ^{182,183,184,186}W for energy up to 10 keV and for ¹⁸³W up to 5 keV

- Transmission and capture cross section measurements performed at Geel for ^{182,183,184,186}W for energy up to 10 keV and for ¹⁸³W up to 5 keV
- Early high-resolution total cross section measurements by Harvey at ORELA for natural tungsten

- Transmission and capture cross section measurements performed at Geel for ^{182,183,184,186}W for energy up to 10 keV and for ¹⁸³W up to 5 keV
- Early high-resolution total cross section measurements by Harvey at ORELA for natural tungsten
- Reich-Moore approximation

- Transmission and capture cross section measurements performed at Geel for ^{182,183,184,186}W for energy up to 10 keV and for ¹⁸³W up to 5 keV
- Early high-resolution total cross section measurements by Harvey at ORELA for natural tungsten
- Reich-Moore approximation
- Cross section covariance matrices (compact format)

- Transmission and capture cross section measurements performed at Geel for ^{182,183,184,186}W for energy up to 10 keV and for ¹⁸³W up to 5 keV
- Early high-resolution total cross section measurements by Harvey at ORELA for natural tungsten
- Reich-Moore approximation
- Cross section covariance matrices (compact format)
- Submitted ENDF files (LRF=7) to NNDC/BNL in August 2014 (revisions 633 to 636 in GFORGE ENDF/A)

Results: Cross Sections (Tungsten Isotopes)

Results: Cross Sections (Tungsten Isotopes^(*))

Neutron incident energy (eV)

(*) M.T. Pigni et al., PHYSOR 2012 – Advances in Reactor Physics – Knoxville, TN April 15-20 2012 (published)
 M.T. Pigni et al., International Conference on Nuclear Data for Science and Technology (ND2013), New York, NY March 4-8 2013 (published)
 M.T. Pigni et al., International Conference on Nuclear Criticality Safety (ICNC2015), Charlotte, NC September 13-17, 2015 (accepted)

National Laboratory

Results: Cross Sections (Tungsten Isotopes)

Cross section (b)

Results: Cross Sections (Tungsten Isotopes)

Statistics on Resonance Parameters

15 M.T. Pigni

Covariance Evaluations (Total)

- Major improvements
 - RRR extended (three-fold) up to 300 keV
 - Data in the thermal range (Sobes, MIT)
 - Transmission data (Pandey, ORELA)
 - Capture data (Guber, GELINA)

Major improvements

- RRR extended (three-fold) up to 300 keV
 - Data in the thermal range (Sobes, MIT)
 - Transmission data (Pandey, ORELA)
 - Capture data (Guber, GELINA)
- Corrected capture cross sections (in rev. 620 and 622 above 220 keV cross sections were underestimated)

Major improvements

- RRR extended (three-fold) up to 300 keV
 - Data in the thermal range (Sobes, MIT)
 - Transmission data (Pandey, ORELA)
 - Capture data (Guber, GELINA)
- Corrected capture cross sections (in rev. 620 and 622 above 220 keV cross sections were underestimated)

Detailed elastic angular distributions

- Point-wise description of angular distribution reconstructed from resonance parameters
- Test on benchmarks

(Capture Cross Sections)

 10^{-1} 10 ⁶⁵Cu(n,g) [b] ⁶³Cu(n,g) [b] 10⁻² From Mini CSEWG Zaikin 1968 2015 (Kawano) ervier 1959 Perkin 1958 Voignier 1992 Diksic 1970 Heil 2008 Tolstikov 1966 Lyon 1959 ENDF/B-VII.1 + ORNL CoH 10-3 10^{-3} 10^{-2} 10^{-1} 10⁰ 10^{-2} 10^{-1} 10^{0} 10^{1} Neutron Energy [MeV] Neutron Energy [MeV] ⁶³Cu Capture Cross Section vs. Integral Measurements ⁶⁵Cu Capture Cross Section vs. Integral Measurements 0.10.1EXFOR Data EXFOR Data ORNL Evaluation (400 groups) ORNL Evaluation (400 groups) Refit of renormalized experimental data energy evaluation. Onmatching with high-⁵⁵Cu(n,g) [b] 0.010.01going work with LANL (Kawano) 0.001 0.001 0.010.110 0.01Neutron Energy [MeV] 20 M.T. Pigni ational Laboratory

(Benchmark Test on Point-wise Angular Distribution)

- Transmission and capture cross section measurements performed at Geel for ^{nat}Ca in the energy range up to 1 MeV (Guber)
 - Measurements of Calcium using metallic samples
 - The samples are in AI canning due to reactivity with air
 - Transmission experiments w/ different sample thickness (path 50 m)
 - Neutron capture using detector system (path 60 m)

- Transmission and capture cross section measurements performed at Geel for ^{nat}Ca in the energy range up to 1 MeV (Guber)
 - Measurements of Calcium using metallic samples
 - The samples are in AI canning due to reactivity with air
 - Transmission experiments w/ different sample thickness (path 50 m)
 - Neutron capture using detector system (path 60 m)

Early high-resolution total cross section measurements by

- Cierjacks (1968, KIC): ^{nat}Ca(n,tot)
- Perey (1972, ORELA): ^{nat}Ca(n,tot)
- Singh (1975): ^{nat}Ca(n,tot)
- Johnson (1978, ORELA): ⁴⁰Ca(n,tot)

- Transmission and capture cross section measurements performed at Geel for ^{nat}Ca in the energy range up to 1 MeV (Guber)
 - Measurements of Calcium using metallic samples
 - The samples are in AI canning due to reactivity with air
 - Transmission experiments w/ different sample thickness (path 50 m)
 - Neutron capture using detector system (path 60 m)
- Early high-resolution total cross section measurements by
 - Cierjacks (1968, KIC): ^{nat}Ca(n,tot)
 - Perey (1972, ORELA): ^{nat}Ca(n,tot)
 - Singh (1975): ^{nat}Ca(n,tot)
 - Johnson (1978, ORELA): ⁴⁰Ca(n,tot)

Used formalism of Reich-Moore approximation

- Transmission and capture cross section measurements performed at Geel for ^{nat}Ca in the energy range up to 1 MeV (Guber)
 - Measurements of Calcium using metallic samples
 - The samples are in AI canning due to reactivity with air
 - Transmission experiments w/ different sample thickness (path 50 m)
 - Neutron capture using detector system (path 60 m)
- Early high-resolution total cross section measurements by
 - Cierjacks (1968, KIC): ^{nat}Ca(n,tot)
 - Perey (1972, ORELA): ^{nat}Ca(n,tot)
 - Singh (1975): ^{nat}Ca(n,tot)
 - Johnson (1978, ORELA): ⁴⁰Ca(n,tot)
- Used formalism of Reich-Moore approximation

Included (n,α) and (n,p) channels

25 M.T. Pigni

^{17,18}O(α,n) Cross Sections up to 5 MeV (...for more details see presentation in the covariance session)

 R-matrix SAMMY code for lower energy range up to about 5 MeV based on Bair's experimental data

- Reich-Moore parameterization of (α,n) reactions

- ¹⁸O elastic channel (as well as spin assignment) based on measurement of Goldberg for available excitation energies
- For ¹⁷O up to about 2 MeV see important work of Best

^{17,18}O(α,n) Cross Sections up to 5 MeV ...and above

- >5 MeV, cross sections based on West's experimental data on natural oxygen
 - West's thick target data (1.5% uncertainty)
- JENDL cross section data for ¹⁷O (0.038%) to determine ¹⁸O (0.205%) out of natural oxygen

n+¹⁶O Resonance Evaluation (ORNL/IRSN)

November 2014:

- ORNL Evaluation (o16ornl1.dat^{*}) in RRR August 2014 (Rev. 629 GF)
- The RRR evaluation up to 6.12 is an update of previous ORNL evaluation (Sayer ORNL/TM-2000/212) up to 6.3 MeV
 - Updated thermal total cross section value: 3.78391 b (T=0° K)
 - (n,n) and (n,α) angular distributions generated by resonance parameters

n+¹⁶O Resonance Evaluation (ORNL/IRSN)

November 2014:

- ORNL Evaluation (o16ornl1.dat^{*}) in RRR August 2014 (Rev. 629 GF)
- The RRR evaluation up to 6.12 is an update of previous ORNL evaluation (Sayer ORNL/TM-2000/212) up to 6.3 MeV
 - Updated thermal total cross section value: 3.78391 b (T=0° K)
 - (n,n) and (n,α) angular distributions generated by resonance parameters

November 2015:

- IRSN/ORNL evaluation*
 - Updated thermal total cross section value: 3.765 b (T=0° K) (Cielo recommendation)
 - Fit of RPI measurements for total cross sections including resolution effects

n+¹⁶O Resonance Evaluation (ORNL/IRSN) (Experimental Data)

- ¹⁶O(n,tot) RPI experimental data, 0.5 6 MeV
- ¹⁶O(n,α) experimental data (Giorginis, ND2007, IRMM), 3.95 9
 MeV with accuracy close 5%
- ¹³C(α,n) experimental data (Harissopulos, Phys. Rev. C72, 62801, 2005), 0.8 8 MeV with accuracy overall 4%
- Giorginis and Harissopulos data give about 30% lower
 ¹⁶O(n,α) cross section data than the Bair-Haas data (Phys. Rev. C7, 1356, 1973), 20% accuracy

SAMMY Fit with RPI Data

Useful Information on n+160

(November 2014)

Quantity	ORNL (T = 0° K)	ORNL (T = 293.6° K)	ATLAS
σ_t	3.78391 b	3.90322 b	-
σ_{γ}	9.58635 × 10⁻⁵ b	9.33362 × 10 ⁻⁵ b	(1.9 +/- 0.19) 10 ⁻⁴ b
σ_{s}	3.78382 b	3.90313 b	3.761 ± 0.006 b
R'	-	4.15 fm	4.8 ± 0.1 fm
a _{coh}	-	5.646 fm	5.805 ± 0.005 fm
Ι _γ	-	2.7596 × 10 ⁻⁴	$(2.7 \pm 0.3) \times 10^{-4}$

Processing performed by NJOY, PREPRO, AMPX, GAIA

Useful Information on n+160

(Latest Update November 2015)

Quantity	ORNL/IRSN (T = 0° K)	ORNL/IRSN (T = 293.6° K)	ATLAS
σ_{t}	3.7654 b	3.8841 b	-
σ_{γ}	1.7153 × 10 ⁻⁴ b	1.6701 × 10⁻⁴ b	(1.9 ± 0.19) 10 ⁻⁴ b
σ_{s}	3.7652 b	3.8839 b	3.761 ± 0.006 b
R'	-	4.15 fm	4.8 ± 0.1 fm
a _{coh}	-	5.805 fm	5.805 ± 0.005 fm
Ι _γ	-	3.0925 × 10 ⁻⁴	(2.7 ± 0.3) × 10 ⁻⁴

Processing performed by NJOY, PREPRO, AMPX, GAIA

56Fe Resonance Evaluation (up to 2 MeV)

- New experimental data available for ⁵⁶Fe
 - RPI new high resolution transmission data (up to 5 MeV)
 - GEEL new inelastic cross section experimental data

⁵⁶Fe Resonance Evaluation

(up to 2 MeV)

- New experimental data available for ⁵⁶Fe
 - RPI new high resolution transmission data (up to 5 MeV)
 - GEEL new inelastic cross section experimental data
- Use the SAMMY capability to included excited states

⁵⁶Fe Resonance Evaluation

(up to 2 MeV)

- New experimental data available for ⁵⁶Fe
 - RPI new high resolution transmission data (up to 5 MeV)
 - GEEL new inelastic cross section experimental data
- Use the SAMMY capability to included excited states
- Results
 - Transmission data fitted up 1 MeV (Harvey, Perey, RPI)
 - Total (RPI) and inelastic (Plompen, Perey) fitted up 2 MeV
 - Capture data fitted up 650 keV (Spencer)
 - Angular distributions fitted up 1 MeV (Perey), up to 2 MeV (RPI)
 - Benchmark ALARM-CF-FE-SHIELD-001 (ICSBEP)

(up to 2 MeV)

- New experimental data available for ⁵⁶Fe
 - RPI new high resolution transmission data (up to 5 MeV)
 - GEEL new inelastic cross section experimental data
- Use the SAMMY capability to included excited states
- Results
 - Transmission data fitted up 1 MeV (Harvey, Perey, RPI)
 - Total (RPI) and inelastic (Plompen, Perey) fitted up 2 MeV
 - Capture data fitted up 650 keV (Spencer)
 - Angular distributions fitted up 1 MeV (Perey), up to 2 MeV (RPI)
 - Benchmark ALARM-CF-FE-SHIELD-001 (ICSBEP)
- On-going work
 - Improving benchmarks

Experimental Data for ⁵⁶Fe Evaluation

Reference	Energy Range	Facility	TOF (m)	Measurement
Harvey (1987)	0.020 – 2 MeV	ORELA	201.575	Transmission
Perey (1990)	120 – 850 keV	ORELA	201.575	Transmission
Cornelis (1982)	0.5 – 2 MeV	GELINA	387.713	Transmission
Danon et al. (2012) (three thicknesses)	0.5 – 2 MeV	RPI	249.740	Transmission
Danon et al. (2012)	0.5 – 2 MeV	RPI	30.07	Scattering (presentation in the workshop)
Perey (1990)	0.85 – 1.5 MeV	ORELA	201.575	Inelastic
Plompen (2011)	0.85 – 2 MeV	GELINA	198.686	Inelastic
Spencer (1994) (two thicknesses)	0.010 – 650 keV	ORELA	40.0	Capture
Perey (1990)	0.85 – 1.5 MeV	ORELA	200.191	Elastic
Cabé (1967)	0.5 – 1.2 MeV	Université de Louvain (Van de Graaff)	~ 1	Elastic
Shcherbakov (1977)	0.001 – 10 eV	TOF/Russia	9.5	Total
Shcherbakov (1977)	0.001 – 10 eV	TOF/Russia	9.5	Capture

SAMMY Fits to the Transmission Data

39 M.T. Pigni

SAMMY Fit to ⁵⁶Fe Capture Data

(Spencer up to 650 keV)

SAMMY Fits to Total/Inelastic ⁵⁶Fe

SAMMY Fit to Elastic Angular Distributions ⁵⁶Fe

42 M.T. Pigni

SAMMY Fit Angular Distributions

RPI Angular Data

Useful Information on ⁵⁶Fe

Data (b)	ATLAS	JENDL4	JEFF3.1	ENDF/BVII.1	ORNL/IRSN
σ_t	-	14.78	14.79	14.75	14.78
σ_{s}	12.69 ± 0.49	12.19	12.21	12.16	12.19
σ_{γ}	2.59 ± 0.14	2.59	2.58	2.59	2.59
Ι _γ	(1.36 ± 0.15)*	1.35	1.34	1.35	1.28
*calculated					

⁵⁶Fe Benchmark Results

ALARM-CF-FE-SHIELD-001 (ICSBEP): Neutron and photon leakage spectra from Cf-252 source at the center of six iron spheres of diameters of 20, 30, 40, 50, 60, and 70 cm (IPPE, Russia)

(issues and resolutions)

 Overestimated ²³⁵U capture cross section in the resonance region range from 0.1 – 2.5 keV

(issues and resolutions)

 Overestimated ²³⁵U capture cross section in the resonance region range from 0.1 – 2.5 keV

Recommendations:

- New measurements of capture and fission cross sections in the keV region
 - Capture and fission data (RPI, alpha measurements)
 - Capture data (LANL)

(issues and resolutions)

 Overestimated ²³⁵U capture cross section in the resonance region range from 0.1 – 2.5 keV

Recommendations:

- New measurements of capture and fission cross sections in the keV region
 - Capture and fission data (RPI, alpha measurements)
 - Capture data (LANL)

 Perform new resonance analysis in the 0.1 – 2.5 keV region

(issues and resolutions)

 Overestimated ²³⁵U capture cross section in the resonance region range from 0.1 – 2.5 keV

Recommendations:

- New measurements of capture and fission cross sections in the keV region
 - Capture and fission data (RPI, alpha measurements)
 - Capture data (LANL)
- Perform new resonance analysis in the 0.1 2.5 keV region
- Investigate the reason for the overestimation of criticalities for some benchmarks (ZEUS)

RPI Capture Data vs ENDF Evaluation

- Measurements used in evaluation:
 - Four transmission
 - Eight fission cross section
 - Four capture cross section

- Measurements used in evaluation:
 - Four transmission
 - Eight fission cross section
 - Four capture cross section
- Evaluation performed up to 2250 eV:
 - 3197 total resonances
 - 29 of which are external resonances

- Measurements used in evaluation:
 - Four transmission
 - Eight fission cross section
 - Four capture cross section
- Evaluation performed up to 2250 eV:
 - 3197 total resonances
 - 29 of which are external resonances
- Reich-Moore approximation

- Measurements used in evaluation:
 - Four transmission
 - Eight fission cross section
 - Four capture cross section
- Evaluation performed up to 2250 eV:
 - 3197 total resonances
 - 29 of which are external resonances
- Reich-Moore approximation
- Fitted also integral data such as K1, Westcott factor, capture resonance integral

Selected Measurements

Author	Energy (eV)	Data
De Saussure (RPI, 1967)	0.01 – 2250	Fission and capture at 25.2 m
Perez (ORNL, 1972)	0.01 – 200	Fission and capture at 39.7 m
Weston (ORNL, 1984)	14.0 – 2250	Fission at 18.9 m
Gwin (ORNL, 1984)	0.01 – 20	Fission at 25.6 m
Spencer (ORNL, 1984)	0.01 – 1	Transmission at 18 m; thickness 0.001468 atom/ barn
Harvey (ORNL, 1986)	0.4 – 68	Transmission at 18 m; thickness 0.03269 atom/barn

Selected Measurements

Author	Energy (eV)	Data
Harvey (ORNL, 1986)	4.0 – 2250	Transmission at 80 m; thickness of 0.00233 atom/ barn cooled to 77 K
Harvey (ORNL, 1986)	4.0 – 2250	Transmission at 80 m; thickness of 0.03269 atom/ barn cooled to 77 K
Wartena (Geel, 1987)	0.0018 – 1	Eta at 8 m
Wagemans (Geel, 1988)	0.001 – 0.4	Fission at 18 m
Schrack (RPI, 1988)	0.02 – 20	Fission at 8.4 m
Weigman (ILL, 1990)	0.0015 – 0.15	Eta (Chopper)

Selected Measurements

Author	Energy (eV)	Data
Weston (ORNL, 1992)	100.0 – 2000	Fission at 86.5 m
Moxon (ORNL, 1992)	0.01 – 50	Fission yield
Gwin (ORNL, 1996)	0.01 – 4	Absorption and fission at 21.68 m
Danon (RPI, 2012)	100 – 5000	Fission and capture yield at 25.56 m (15 ns bursts)
Jandel (LANL, 2012)	100 – 5000	Capture at 25.45 m (125 ns bursts)
n_TOF	2 – 60	Fission

Useful Information on ²³⁵U

Quantity	Standard	IRSN
$\sigma_{\rm f}$ (b)	584.380 ± 1.030	584.940
σ_{γ} (b)	99.304 ± 0.725	98.667
σ_{s} (b)	14.087 ± 0.219	15.465
9 _a	0.9789 ± 0.0008	0.9775
9 _f	0.9773 ± 0.0008	0.9755
K1	—	722.150
$\int_{0.5 MeV}^{20 MeV} (\sigma_{\gamma}/E) dE$	_	0.500

SAMMY Fit

ORNL, RPI, and LANL CAPTURE DATA

ORNL, RPI, and LANL CAPTURE DATA

Fit to RPI Capture Data

Fit to RPI Fission Data

Improvement of Fission Integral

(using the new fission data)

∆ E (eV)	Standard (b eV)	IRSN (b eV)
0.0206 - 0.0623	19.18 ± 0.11	19.16
7.8 – 11	246.40 ± 1.24	246.021

Improvement of Fission Integral

(using the new fission data)

∆ E (eV)	Standard (b)	IRSN (b)
100 – 200	21.17 (11)	20.21
200 – 300	20.69 (11)	20.57
300 – 400	13.13 (7)	12.93
400 – 500	13.78 (8)	13.30
500 - 600	15.17 (9)	14.95
600 - 700	11.51 (7)	11.30
700 – 800	11.10 (6)	10.86
800 – 900	8.21 (48)	8.00
900 – 1000	7.50 (44)	7.24
1000 – 2000	7.30 (40)	7.14

✓ National Laboratory

RRR extension from 2.5 – 4 keV

- issues with the unresolved resonance representation resolved by using RRR parameters
- High-resolution transmission data (Harvey) and fission (Weston) used in the SAMMY fitting
 - Fission cross section of Weston (1984) normalized according to the NEA-WPEC-5 subgroup. Recommendation: the fission cross section integral in 100 – 1000 eV is 9275 b eV

What is Still Needed

- Capture cross section not fitted above 2 keV. New LANL data will help
- Need to know the recommended average values for fission and capture cross sections
- Thermal values far from standards.
- An on-going evaluation (not shared with CIELO yet) indicates the fitted standard values are more consistent with benchmark results
- Would RPI be able to measure capture data as was done for ²³⁵U?

External Levels Contribution

(to include energy bound levels and energies above 4 keV)

National Laboratory

70 M.T. Pigni

IDGF

National Laboratory

No capture data available in the 2500 – 4000 eV range

Comments

- Up to 4 keV evaluation can be completed as:
 - Adjust the resonance parameter to fit the thermal data to the standard values
 - Include capture normalization appropriately in the energy range 2.5 – 4 keV
 - Include integral benchmark in addition to the SAMMY fit of the differential data
 - The above task can be achieved without adding much burden in the fitting process

Acknowledgments

This work was supported by the U.S. Department of Energy (DOE) Nuclear Criticality Safety Program (NCSP), National Nuclear Security Administration Office of Defense Nuclear Nonproliferation Research and Development.