ENDF/B-VIII Library status, cleanups and ⁸⁶Kr

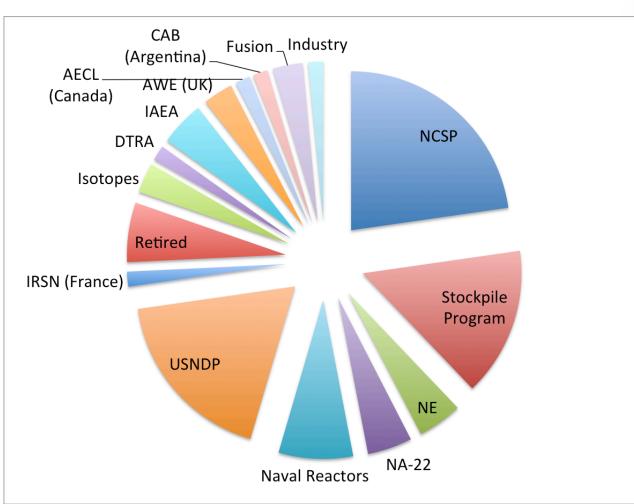
David Brown, Elizabeth Rubino

a passion for discovery

ENDF/B-VIII Status

- ENDF/B library is product of CSEWG, an informal yet very long running collaboration (50 year in June 2016)
- ENDF/B is the US's most important data library for nuclear applications
- Next major release due in FY17-18 time frame
- Major new items, so far:
 - CIELO evaluations: ¹⁶O, ⁵⁶Fe, ^{235,238}U, ²³⁹Pu
 - Neutron standards
 - EPICS2014 (atomic reaction data)
 - New TSL evaluations
 - Many bugs fixes & other improvements

Release in legacy ENDF and new GND formats


ENDF/B-VII.0 contains 393 evaluations; 1325 citations since 2006 (Google Scholar) ENDF/B-VII.1 contains 423 evaluations

669 citations since 2010 (Google Scholar)

There are many contributors to CSEWG

- Due to CSEWG's informal nature, it is hard to assess precise contribution to ENDF/B in either \$\$ or FTEs
- Chart reflects attendance of CSEWG meeting
- Double counting alert: some people counted twice since funded from multiple pots of \$\$

Contributions to CSEWG are not just evaluations

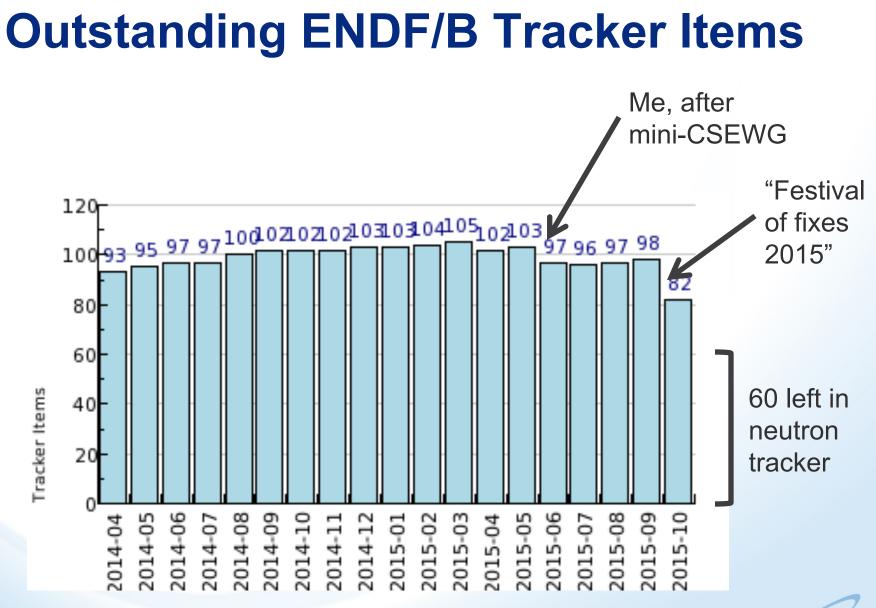
Program	Measure ment	Theory	Compilation	Evaluation	QA (V&V, IE)	Infrastructure (Gforge, etc.)
DTRA	\checkmark					
International (IAEA, NEA,)		\checkmark	\checkmark	\checkmark	\checkmark	✓
NA-22	\checkmark	\checkmark		\checkmark		
Naval Reactors	\checkmark				\checkmark	
NCSP	\checkmark	\checkmark		\checkmark	\checkmark	
NE					\checkmark	
Other (NP, Fusion,)	1	1			1	
Stockpile	\checkmark	\checkmark		\checkmark	\checkmark	✓
USNDP	1	1	\checkmark	\checkmark	\checkmark	1

BIOOKHAVEH SCIENCE ASSOCIATES

MALIONAL LADORATORY

Unlike other data projects, we do not restrict who can contribute: FY15 evaluations

Program	Full evaluations	Partial evaluations	Bug fixes
NCSP	1		
AECL (Canada)	1.5		
CAB (Argentina)	1.5		
JAEA (Japan)	18		
Retirees			305
Stockpile Program			16
USNDP		9	33 BROOKHAVE



More detail on this year's evaluations

New evaluations

- CAB-AECL: OinD2O (TSL), DinD2O (TSL), HinH2O (TSL)
- NCSU: Lucite (TSL)
- Stolen from JENDL-4: Yb, Os, ^{154,159}Dy, ^{181,182}Hf
- Small changes with large impact
 - LLNL-LBNL EGAF: ^{6,7}Li, ¹¹B, ¹⁹F, ²³Na, ²⁷Al, ²⁸Si, ^{35,37}Cl
 - D.E. Cullen EPICS: 300 evaluations in photo-atomic, electro-atomic, and atomic-relaxation libraries
 - BNL resonances: ^{120,122,124}Sn, ^{185,187}Re
- Bug fixes

Brookhaven Science Associates

BROOKHAVEN NATIONAL LABORATORY

"Festival of Fixes 2015" 9-11 September 2015

Idea (Thanks T.K.):

- Get a bunch of experts together with their laptops and evaluation tools and lock them in a room for a few days.
- Together we went though outstanding Tracker Items and CSEWG Action Items
- Immediate feedback from the ENDF library manager and the continuous integration system made for rapid turn around

"Festival of Fixes 2015" 9-11 September 2015

- Un(officially) planned convergence of visits at the NNDC:
 - Thompson: ^{123,124}Xe, ^{180,181}Ta, ^{185,187}Re
 - **Kawano**: n, ¹¹B, ¹⁸O, ³⁵Cl, ¹²⁴Sb, ¹⁵¹Sm, ¹⁵³Eu
 - Sleaford (in absentia): EGAF commits
- Plus NNDC folks:
 - Mughabghab: ^{122,124}Sn
 - Brown: Steal evaluations from JENDL-4, discover & fix bugs in FUDGE and ADVANCE

This was very successful, I would love to make it a regular thing!

Most of trackers still in neutron sublibrary

Brookhaven Science Associates

Non-neutron bugs covered in mini-CSEWG, no progress to report

Brookhaven Science Associates

Deficiencies in Decay Sub Library

TrackerI temID	Summary	Priority	Status	Open Date	Close Date	Last Modified Date
210	Upprodition Inconsistencies in half lives	4	Closed	2009-12-07	2015-05	2009-12-07
210	Unspecified: Inconsistencies in half-lives	4	Closed	2009-12-07		
237	Unspecified: Fission beta-spectra 40% lower than in VI.8	4	Closed	2009-12-07	2015-05 -05	2009-12-07
					2015-05	
238	Unspecified: Masses (AWR) inconsistent	4	Closed	2009-12-07	-05	2009-12-07
					2015-05	
239	Sb-129: Inconsistency in beta decay	4	Closed	2009-12-07	-05	2009-12-07
240	Rh-102 Rh-102m: Warning statement in MT451	4	Open	2009-12-07		2009-12-07
					2015-05	
816	a problem with the Half-life of Rf-261 or Rf 261m in ENDF VII 1	3	Closed	2013-09-25	-05	2013-09-25
826	Kr-90	3	Open	2013-10-31		2013-10-31
840	Er-145 listed as stable	4	Open	2014-03-11		2014-03-14
895	Se-80 listed as radioactive with zero half life	3	Open	2014-09-02		2014-09-02

Deficiencies in Thermal Scattering Law Sub Library

TrackerI				
temID	Summary	Priority	Open Date	Follow-ups
	O in BeO U in UO2: MAT numbers for thermal scat.			
232		4	2009-12-07	TO DO: trivial fix
233	H in H2O: Wrong ZA value	4	2009-12-07	TO DO: trivial fix
692	U(UO2) and O(UO2) reversed	3	2012-06-25	TO DO: trivial fix

1 3

Brookhaven Science Associates

Gamma sublibrary

TrackerI temID	Summary	Status	Open Date	Follow-ups
858	Mass of deuteron incorrect	Open		e- mass taken off here, not done in neutron sub library. ENDF manual says to use atomic mass for all targets, so we need to put the electrons back. This will mess up kinematics. Need new evaluation or better rule.
860	Th-232 fissile goofs part 1	Closed	2014-06-05	LFI flag flipped
861	Th-232 fissile goofs part 2	Open		laudable goal to have prompt and delayed nubar, but often best we can do is the total nubar, such as was done here.

green == fixed yellow == easy fix white == isotope fix red == major fix spanning several isotopes

Deuteron sublibrary

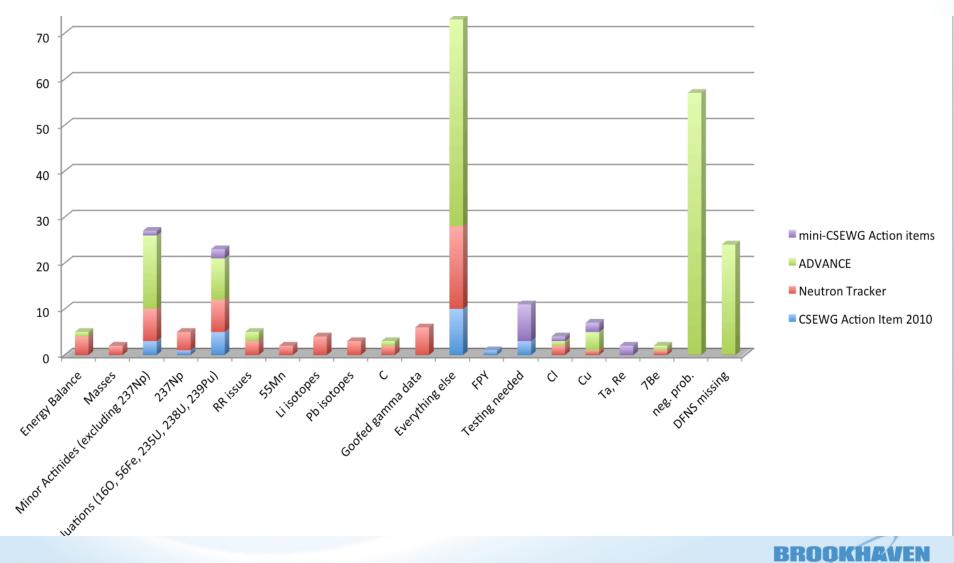
TrackerI temID	Summary	Status	Open Date	Follow-ups
	H-2: Energy range too short in the (d n) reaction	Open	2009-12-07	need new evaluation, evaluation stops at 10 MeV
	Mass of deuteron incorrect d+d evaluation	Open	2014-05-07	e- mass taken off here, not done in neutron sub library. ENDF manual says to use atomic mass for all targets, so we need to put the electrons back. This will mess up kinematics. Need new evaluation or better rule.

```
green == fixed
yellow == easy fix
white == isotope fix
red == major fix spanning several isotopes
```

Proton sublibrary

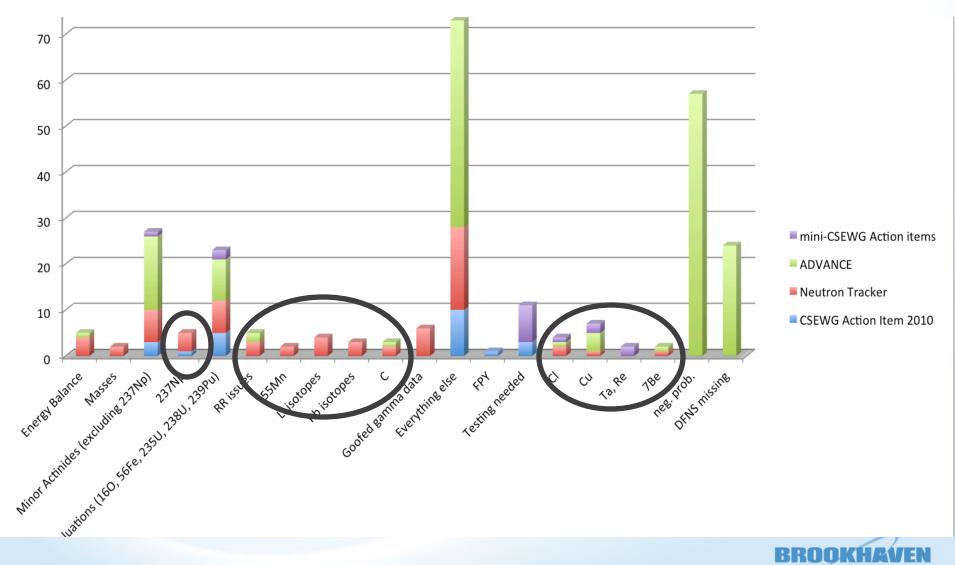
TrackerItemID	Summary	Status	Open Date	Follow-ups
	H-3: Energy range too short in the 3H(p n)3He reaction	Open	2009-12-07	need new evaluation, all cross section stop at 12 MeV
	Ca-40: Inconsistent energy ranges in MF3 and MF6	Open	2009-12-07	
	Cu-63: Inconsistent energy ranges in MF3 and MF6	Open	2009-12-07	
669	Pb207 outgoing energies out of order	Open	2012-02-23	

```
green == fixed
yellow == easy fix
white == isotope fix
red == major fix spanning several isotopes
```



nFPY sublibrary

TrackerI temID		Status	Open Date	Follow-ups
702	241Pu in the rare earth region	Open	2012-08-29	need revaluation
703	As-84m doesn't exist but we have a fission yield for it	Open	2012-08-29	need revaluation
812	FPY has non-existent metastable states	Open	2013-09-06	need revaluation
841	IFPY > CFPY for Pu-239	Open	2014-03-14	need revaluation

green == fixed yellow == easy fix white == isotope fix red == major fix spanning several isotopes



Breakdown of bugs in neutron sublibrary

Brookhaven Science Associates

Breakdown of bugs in neutron sublibrary

Brookhaven Science Associates

Big issues remaining

Overall:

- d mass: with e- or without e-
- Legendre moment data with absurd Lmax
- Incomplete evaluation (usu. through ⁸Be*)
- Total nubar, but no prompt or delayed nubar
- Missing DFNS
- Various RR issues

Specific cases:

- ²³⁷Np: 4 trackers, 1 Action item
- Li: 4 trackers
- Pb: 3 trackers
- CI: 2 trackers, 1 ADVANCE complaint, 1 action item
- Cu: 1 tracker, 4 ADVANCE complaints, 2 action items
 - C: 2 trackers, 1 ADVANCE complaint

A confluence of events led us to attempt to evaluate ⁸⁶Kr

- A need:
 - Radiochemical diagnostic
 - Can mix into d-t fuel say at NIF
- New data just made available:
 - TUNL just published results on ⁸⁶Kr(n,g) and ⁸⁶Kr(n,2n)
 - LANSE published ⁸⁶Kr(n,n')
- Cheap labor:
 - Elizabeth Rubino, a SULI student at BNL
 - Last year she was REU student at TUNL, measuring ⁸⁶Kr cross sections!

PHYSICAL REVIEW C 92, 014624 (2015)

Measurements of the ⁸⁶Kr $(n, \gamma)^{87}$ Kr and ⁸⁶Kr $(n, 2n)^{85}$ Kr^m reaction cross sections below $E_n = 15$ MeV

Megha Bhike,^{1,2,4} E. Rubino,^{3,1} M. E. Gooden,^{4,4} Krishichayan,^{1,2} and W. Tornow^{1,2} ¹Department of Physics, Duke University, Durham, North Carolina 27708, USA ²Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA ³Florida Atlantic University, Boca Raton, Florida 33431, USA ⁴Department of Physics, North Carolina State University, Reliegh, North Carolina 27695, USA (Received 13 May 2015; revised manuscript received 15 June 2015; published 27 July 2015)

The 48 K(n, γ) 70 Kr neutron-capture cross section was measured at 11 energies between 0.37 and 14.8 MeV. The Cross-section data for the 166 Kr(n, 2n) 56 Kr⁺ reaction were obtained at 9 energies between 10.9 and 14.8 MeV. The data are important for testing calculations used to predict the s-process cross section in the unneasured energy range above 1 MeV for the 66 Kr(n, γ) 76 Kr reaction, and to check on the consistency of parameters used in TAXTS calculations for the 56 Kr(n, γ) 76 Kr reaction. The two data sets could also be used as a nuclear physics based diagnostic tool for studying properties of the deuterium-tritium plasma created in inertial confinement fusion reactions at the National Jinition Facility at Lawrence Livernore National Laboratory.

DOI: 10.1103/PhysRevC.92.014624

PACS number(s): 26.20.Kn, 25.40.Fq, 25.40.Lw, 52.57.-z

I. INTRODUCTION Asymptotic giant branch (AGB) stars are assumed to be the source of approximately half of all chemical elements beyond iron in our galaxy [1,2]. These elements are produced via reproduce the measured 86 Kr(n,2n) 85 Kr m cross-section data, which previously existed only at 14 MeV.

In addition to the ${}^{124,136}Xe(n,\gamma){}^{125,137}Xe$ and ${}^{124,136}Xe(n,2n){}^{123,135}Xe$ reactions, krypton isotopes have also been considered as donants in deuterium tritium (DT)

PHYSICAL REVIEW C 87, 044336 (2013)

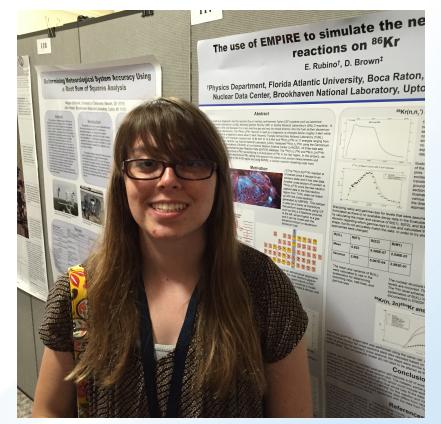
Low-spin states in ⁸⁶Kr from the (n, n') reaction

N. Fotiades,^{*} M. Devlin, and R. O. Nelson Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

> T. Granier CEA, DAM, DIF, F-91297 Arpajon, France (Received 5 February 2013; published 29 April 2013)

Background: 86 Kr₅₀ is a neutron-rich nucleus amenable to shell-model calculations due to the shell closure at N = 50. It is also produced as a fragment in the fissioning of actinides.

Purpose: The level structure of 36 Kr at low excitation energies needs additional investigation for detailed comparison with calculations from theoretical models. By determining the cross sections for transitions that feed directly the ground state of 36 Kr, a large fraction of the total cross section for the 36 Kr(n, n') 36 Kr reaction channel can be obtained.

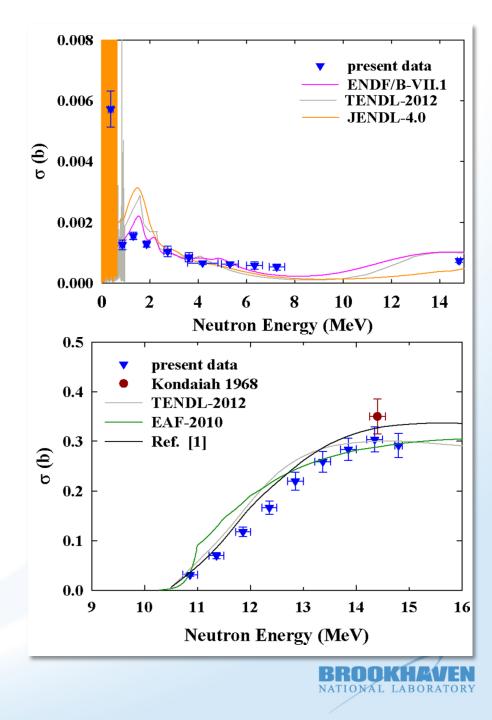

Methods: Low-spin states of ⁸⁰Kr were populated in the ⁸⁰Kr(n, n²) reaction and were studied with the Germanium Array for Neutron-Induced Excitations (GEANIE) spectrometer. The broad-spectrum pulsed neutron beam of the Los Alamos Neutron Science Center's (LANSCE) WNR facility provided neutrons in the energy range from 1 to above 600 MeV. The time-of-flight technique was used to determine the incident-neutron energies. Results: Parially 1-ray cross sections were measured for 21 γ rays of 80 Kr and for neutron energies. IN $eV < E_a < 20$ MeV. A large part of the total cross section for the 90 Kr(n, n²)/Kr raction is observed. The neutron energies to show a 37 MeV (aubling the number of placed transitions are to show and third 0⁺ states, and one new level. The excitation energy of these levels was nore accurately determined and the relative intensities of their decay paths were measured. All previously known levels, pa to 37.3-MeV ouclidation energy were identified, and the new level was added at 2917-keV excitation energy. Predictions from shell-model calculations are compared with the data.

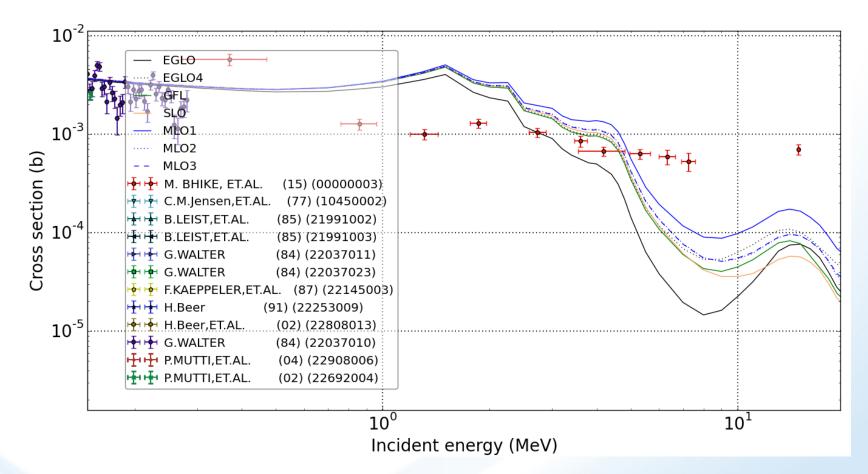
DOI: 10.1103/PhysRevC 87.044336 PAG

PACS number(s): 23 20 L v 25 40 Fg 27 50 +e 28 20 -v NATIONAL LABORATORY

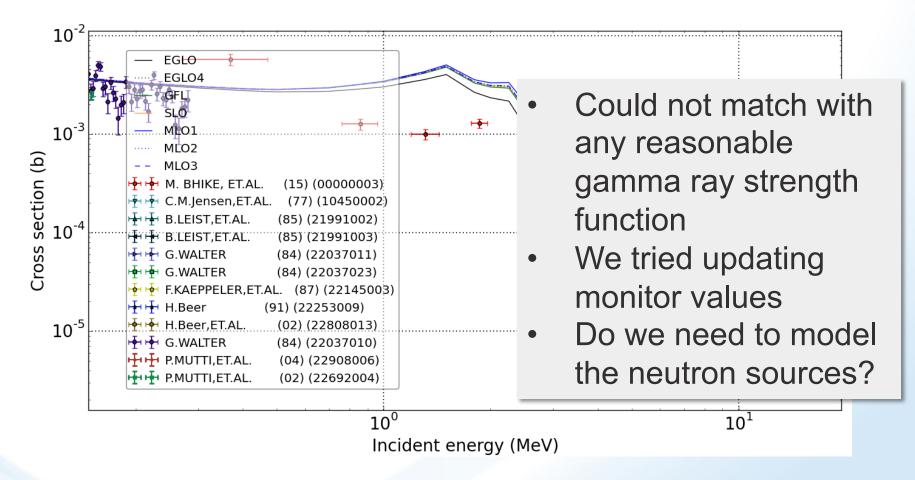
Evaluation is heroic effort of one summer student


- Elizabeth Rubino
- Graduated from Florida Atlantic University in 2015
- Just started graduate school at Florida State University
- SULI student at NNDC over summer
- Hopefully not traumatized by summer experience



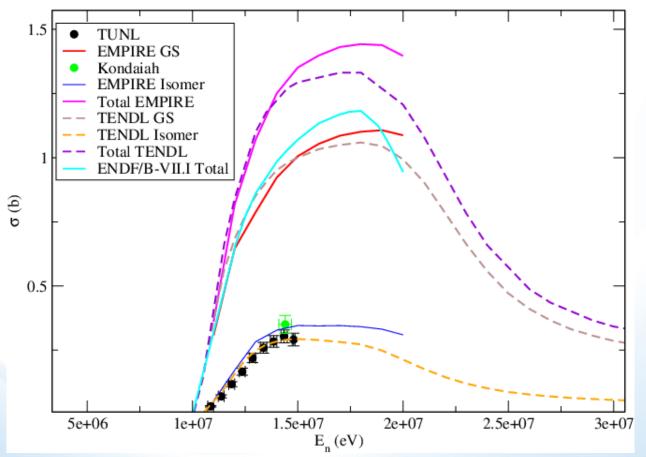

M. Bhike *et al.*, Phys Rev. C 92 014624 (2015)

- Three sets of mono-energetic beams from ³H(p,n)³He, ²H(d,n)³He, ³H(d,n)⁴He reactions
- Determined by activation:
 - ⁸⁷Kr**→**⁸⁷Rb for (n,g),
 - ^{86m}Kr for (n,2n)
- Reactions monitored with
 - ¹¹⁵In(n,g)^{116m1}In
 - ¹⁹⁷Au(n,2n)¹⁹⁶Au


We could not match (n,g), we suspect a data problem

- 14 MeV data point a bit low (~0.7 mb)
- Other points way too flat

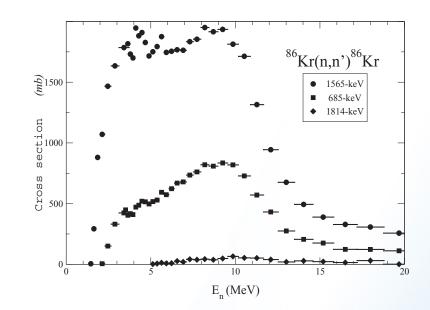
We could not match (n,g), we suspect a data problem

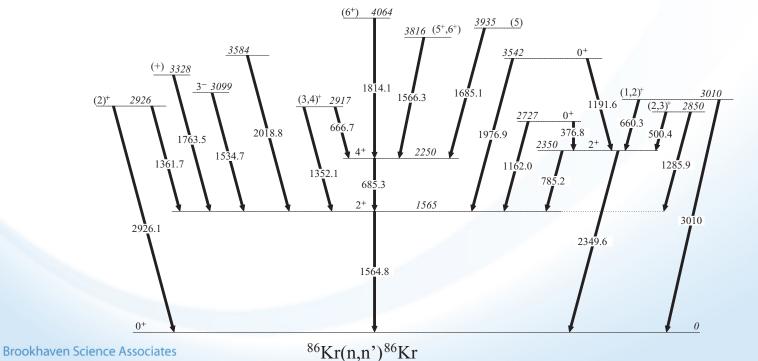


- 14 MeV data point a bit low (~0.7 mb)
- Other points way too flat

⁸⁶Kr(n,2n) pretty good (no EMPIRE tuning yet!)

 86 Kr(n,2n) 85 Kr

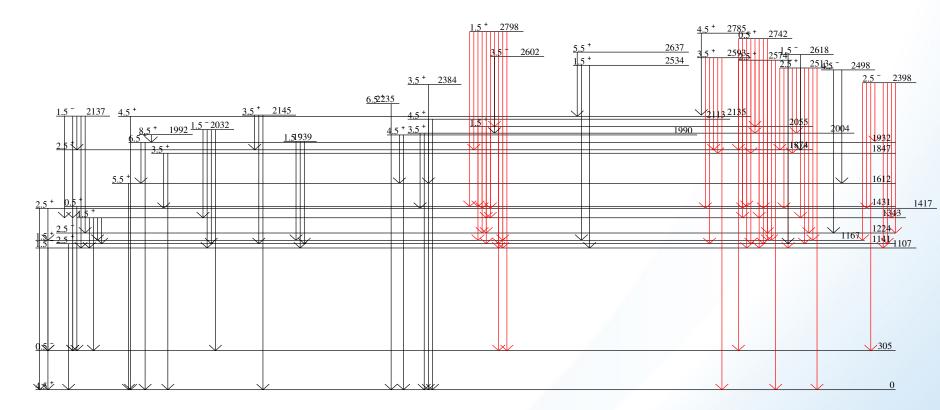

Not clear if undiagnosed experimental problems impact agreement with TUNL data here



Brookhaven Science Associates

Fotiades, *et al.* Phys. Rev. C 87, 044336 (2013)

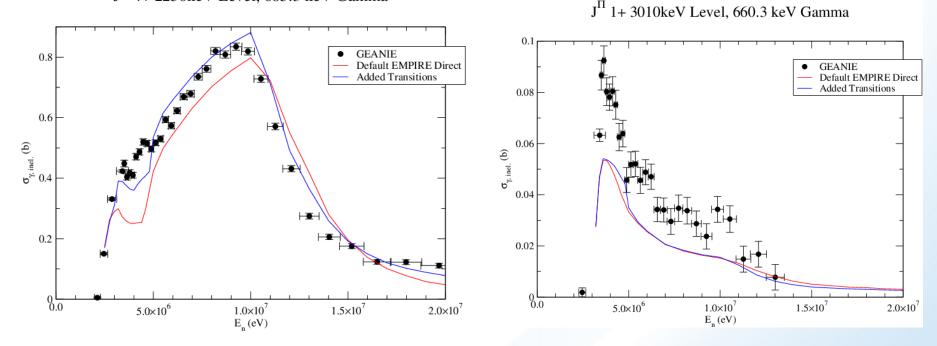
 Partial gammas cross sections measured with GEANIE array at LANSE



To match partial y data, need complete level scheme as high as possible

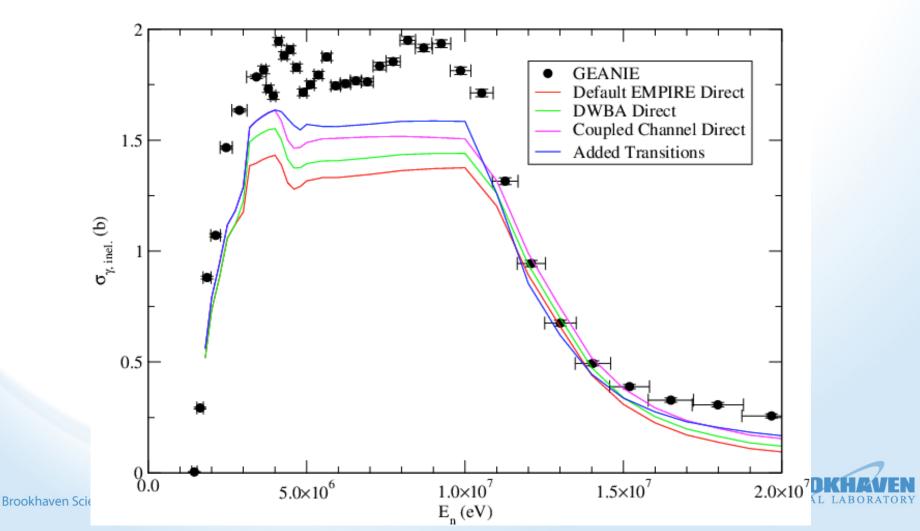
- Completed level J[⊓]'s up to level #40; EMPIRE cannot extend the level scheme past ENDF max.
- Added BR's based on single particle systematics, added new γ 's for 6.
- From ENSDF, found average values
 - B(E1) = 6.823 ±1.450,
 - $B(E2) = 9.398 \times 10^{-7} \pm 2.534 \times 10^{-4}$,
 - B(M1) = 0.2046 ± 0.1442
- Above, needed to tune level density

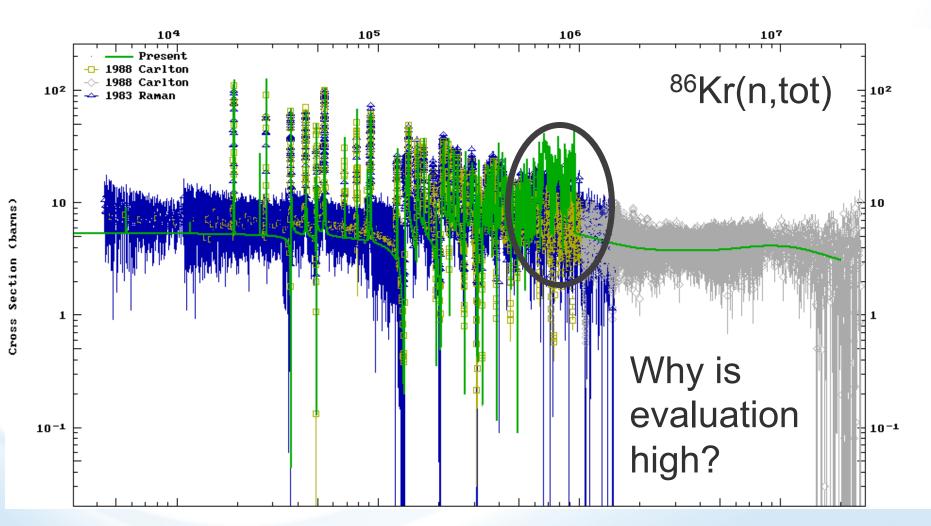
Revised level scheme w/ new y's


New γ's don't feed right levels enough to help much

<mark>Red</mark> Black γ 's with fake BR's other γ 's

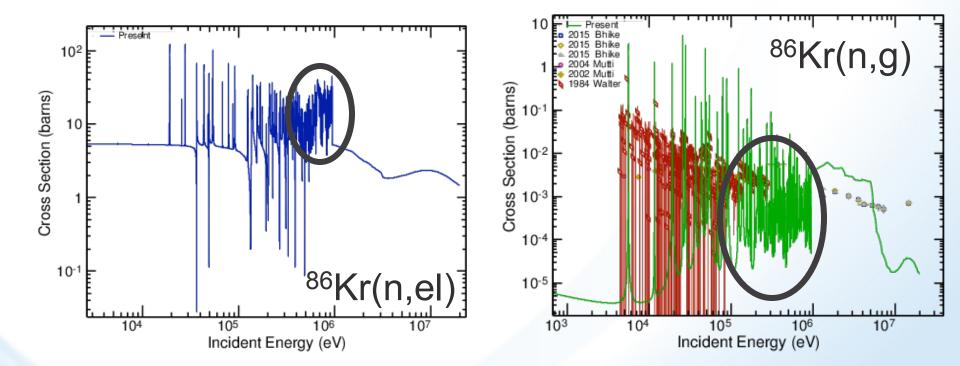
Agreement with gammas hit-and-miss


 J^{Π} 4+ 2250keV Level, 685.3 keV Gamma


- Shape not terrible
- New BR's have only modest impact in many cases
- Suggests problem with spin-dependence of LD

That said, this data was important to determine how important direction reactions are in this case

J^П 2+ 1565keV Level, 1564.8 keV Gamma



Resonances also need a lot of work

Appears to be driven by (n,el), but it impacts (n,g) too

····,

Conclusion

Evaluation fubar:

- (n,g) in fast region can't be matched to data
- (n,n') can't be matched without a lot more effort, need detailed structure information
- RRR messed up, must dig further
- (n,2n) looks good, but I don't trust it
- This is not the right project for a SULI student, no matter how good she is
- And, when we get an evaluation, how do we test it?

