

— EST.1943

ICSBEP Benchmark Testing of CIELO Nuclides at LANL

A.C.(Skip) Kahler Los Alamos National Laboratory

> CSEWG Validation Committee November 2, 2015

> > UNCLASSIFIED

Abstract

We review criticality data testing performed at Los Alamos with a combination of ENDF/B-VII.1 + potential CIELO nuclear data evaluations.

UNCLASSIFIED

<u>Outline</u>

CIELO Overview

Criticality Data Testing ICSBEP HMF, HST, IMF, LCT, PMF, PST benchmarks

Summary

UNCLASSIFIED

CIELO Overview

- CIELO = \underline{C} oordinated <u>International</u> \underline{E} valuated \underline{L} ibrary <u>O</u>rganization (WPEC Subgroup 40).
- Goal: To develop updated, best available evaluated nuclear data files for a select group of nuclides ... ¹H, ¹⁶O, ⁵⁶Fe, ^{235,238}U and ²³⁹Pu.
 - "… The goal is to provide evaluations that perform in integral simulations (k_{eff}, spectral indices, etc.) as well as, or better, compared to existing evaluations, whilst using more accurate fundamental cross sections and spectra data. CIELO data will not be adjusted in the formal sense, but we recognize that some aspects of CIELO will include evaluation choices based upon feedback from simulations of integral experiments. …"
- Why: The major international evaluated nuclear data libraries don't agree on the internal cross section details of these most important nuclides!

CIELO Nuclides

■ ¹H —

- ¹⁶O (05c), Hale 7/2014 evaluation (mf3/mt2, mf3/mt800 and mf4/mt2) spliced to existing ENDF/B-VII.1 (IAEA 16O_halead).
- ⁵⁶Fe (02c), BNL GForge v88.
- ²³⁵U (19c), ENDF/B-VII.1 plus (i) Leal "isrn_v2" RR; (ii) IAEA low energy v(E) + IAEA & LANL pfns revisions.

- Now available from the IAEA CIELO web site.

- ²³⁸U (04c), IAEA "ib44".
- ²³⁹Pu (23c), ENDF/B-VII.1 plus SG34 plus recent Romano & LANL pfns revisions and LANL high energy v(E) tweak.

Now available from the IAEA web site.

CIELO Overview

- The IAEA Nuclear Data Section has created a web page ... <u>https://www-</u> <u>nds.iaea.org/CIELO/</u> ... with links to candidate evaluated data files.
- CIELO candidate ⁵⁶Fe files are also available from the "CIELO-Iron" project from the BNL NNDC GForge server.

0.0			IELO (WPEC-3040	"	~ (
https://www-nds	Atomic I	CIELO/	cy		V	C	s = ia	ea, cielo	IAEA.o	거 🕈 🏦 😭 🖬 💌 =
Nucl 🖉	eai	Dat	a Serv	ic	es				Sea	arch G
Databases » EXF	DR EN	DF CINDA	IBANDL Med	dical	PGAA 1	IGAtlas	RIF		. IRDI	F-2002
rticipants pote		ļ	CIELO	וכ	Pro	jeo	ct	(W	PE	C-SG40)
bellos vano			IAEA	Dat	a Dev	elop	ome	nt Pro	oject	t within the
amoto aire			Intern	atio	onal P	ilot	Pro	ject o	f the	e OECD/NEA
nain rillon ge guere rnard			IAEA	DDF	o Coord	linat	ors:	R.Cap	ote a	and A. Trkov
non	Ove	rall Object	tive							
rest	The c interr U-23	overall obje national col 5, U-238 ar	ctive of the CI laboration to ir nd Pu-239.	ELO P	P <mark>ilot Proje</mark> Ze evalua	ect (Ol ted nu	ECD/N dear	NEA WPE data files	C SG-4 s of the	40) is to test the scheme of broad e major nuclides: H-1, O-16, Fe-56,
nd e-mail o all o members	The c Fuel for ot	ollaboratio Cycle, whi ther releva	n scheme is sir ch resulted in a nt nuclides.	nilar t a very	to that er successf	nploye ul new	d in tl / eval	ne IAEA (uation of	CRP on Th-232	Evaluated Nuclear Data for the Th-U 2 and improvements to the evaluations
ıks	Subj	ects/issue	es to address							
ar Data Services lar Data Section D Network	1. F 2. I 3. F 4. I 5. A	Review of the dentificatio Review of the dentificatio analysis and	ne status of ex n of high priori ne capabilities n of relevant b d verification of	perim ty me and li ench f the o	nental dat asureme mitations mark exp consisten	a nt requ of the erimer cy of c	uests oretio its for ovaria	al model data val	s idation rmatior	i n
	0. 1	ossibilities	and innications	5 01 0	ata aujus	unent				
	Avail	able Mate	rials							
	Pu	-239 U-2	38][U-235][F	e-56	0-16	H-1				
	Dat	a files avail	able for downlo	oadin	g:					
	#	Version	Description	alor	Format	Link	Doc	uments		
		C	A.C.(Skip) Kar	ner	ENDF	txt	[1]			
	Rel	evant doo	uments							
	#	Date	Author	Title				Link		
	1	03/2015	A.K. Kahler	Con	tent of M	F1/MT4	51	(Unpubli	shed)	
	Web p	age: by A. Tri	(OV							

^{235,238}U, ²³⁹Pu – HMF & PMF Benchmarks

Benchmark	Benchmark keff	endf/b-vii.1 (e71)	e71 + ²³⁵ U_19c + ²³⁸ U_04c	"new" - e71, pcm
HMF1 (Godiva)	1.0000	0.99989	1.00010	21
HMF28 (Flattop-25)	1.0000	1.00284	1.00380	96
IMF7 (Big-10)	1.0045	1.00448	1.00329	-119
			e71 + ²³⁹ Pu_23c + ²³⁸ U_04c	"new" - e71, pcm
PMF1, rev3 (Jezebel)	1.0000	1.00061	1.00024	-37
PMF6 (Flattop-Pu)	1.0000	1.00111	1.00164	53

Fast, bare (Godiva and Jezebel) system calculated eigenvalues remain near unity.

Fast, reflected (Flattops, Big-10) system calculated eigenvalues aren't as good, ☺.

NIS

²³⁵U (& ¹H, ¹⁶O) – HST Benchmarks

- A suite of 45 HEU-SOL-THERM benchmark critical configurations has been used for many years.
 - Accurate calculated eigenvalues, correlated against Above-Thermal Leakage Fraction (ATLF), have been obtained since ENDF/B-VI.3 in the early 1990s.
 - No trends observed for other regression analyses such as k_{calc} versus Above-Thermal Fission Fraction (ATFF); versus Average Energy of a Neutron causing Fission (EAF); versus Energy of Average Lethargy of a Neutron causing Fission (EALF) or versus solution H/U ratio.
 - Tests of revised data sets must answer the question ... "are we still ok or did we break something?".

LA-UR-15-28528

²³⁵U (& ¹H, ¹⁶O) – HST Benchmarks

- Near unity intercept and near zero slope indicate no bias in calculated eigenvalues for the HST benchmark class (with e71).
 - e71 + ²³⁵U_19c + ²³⁸U_04c + ¹⁶O_05c:
 - b = 1.0002(31)
 - m = +0.0019(83)
 - $e71 + CAB h h_2 o kernel:$
 - b = 1.0003(33)
 - m = -0.0005(87)

UNCLASSIFIED

LA-UR-15-28528

LOS A

²³⁵U (& ¹H, ¹⁶O, ²³⁸U) –

LCT Benchmarks

- Use a subset of LEU-COMP-THERM (LCT) benchmarks
 - LCT5 cases 1, 5 and 12 have water-to-fuel volume ratio of 2.7, 1.0 and 0.5, respectively.
 - The variable rod pitch in LCT7 allows testing of under-moderated (1.26 cm rod pitch), near optimally moderated (1.6 cm and 2.1 cm rod pitch) and over-moderated (2.52 cm rod pitch) conditions.
 - LCT10 and LCT17 consist of several clusters plus one of (i) Lead;
 (ii) ^{nat}U; or (iii) Steel reflectors.
 - Can use LCT2 and LCT1, respectively, for unreflected "base case" comparison.
 - LCT8 are B&W lattices with varying amounts of soluble boron.
 - LCT42 is similar to LCT10 and LCT17 but also includes metal plates between the clusters.
- As with HST, we're in pretty good shape for this benchmark class, so "... if it isn't broke, don't fix it!".

²³⁵U (& ¹H, ¹⁶O, ²³⁸U) – LCT Benchmarks

LEU-COMP-THERM-005, case 5 is shown

- 378 rods, 1.801 cm pitch.

Other LCT5 cases include:

- case 1: 132 rods, 2.398 cm pitch;
- case 12: 1185 rods, 1.598 cm pitch.

These three configurations do not contain soluble Gd poison, but other LCT5 cases do.

UNCLASSIFIED

²³⁵U (& ¹H, ¹⁶O, ²³⁸U) – LCT Benchmarks

LEU-COMP-THERM-017 geometry (three 19x16 clusters on a 2.032 cm rod pitch).

- LEU-COMP-THERM-001 uses the same fuel without walls.

LEU-COMP-THERM-010 employs smaller clusters (mostly 13x8 on a 2.54 cm rod pitch).

- LEU-COMP-THERM-002 uses the same fuel without walls.

LEU-COMP-THERM-042 employs 20x18 and 25x18 clusters on a 1.684 cm rod pitch with steel reflecting walls and various intracluster absorber plates.

LA-UR-15-28528

"new" e71, pcm

> -185 -32 36 -26 -52

> -383 -363 -377 -352 -357 -388 -370

> -138 -98 -51 -41 -82

-143 -143 -120 -106 -101 -100

• Los Alamos

e71+

EST.1943 -

²³⁵U (& ¹H, ¹⁶O, ²³⁸U) -LCT Benchmarks

Benchmark	Benchmark keff	endf/b-vii.1 (e71)	e71 + 235U_19c + 238U_04c + 16O_05c +	"new" - e71, pcm	Benchmark LCT7.1	Benchmark keff 1.0000	endf/b-vii.1 (e71) 0.99759	235 238 160 56 0.
			56Fe_02C		LCT7.2	1.0000	0.99884	0.
LCT1.1	0.9998	0.99955	0.99871	-84	LC17.3	1.0000	0.99750	0.
LCT1.2	0.9998	0.99906	0.99786	-120	LC17.4	1.0000	0.99810	0.
LCT1.3	0.9998	0.99850	0.99762	-88				
LCT1.4	0.9998	0.99908	0.99813	-95		1 0007	1 00060	0
LCT1.5	0.9998	0.99695	0.99604	-91		1.0007	1.00060	0.
LCT1.6	0.9998	0.99890	0.99784	-106	LCT8 5	1.0007	1.00087	0.
LCT1.7	0.9998	0.99829	0.99726	-103	LCT8 7	1.0007	1.00042	0.
LCT18	0 9998	0 99732	0 99641	-91	LCT8.8	1.0007	0 99981	0
	0.0000	0.001.02	0.00011	-97	LCT8.11	1.0007	1.00135	0
				01				
LCT2 1	0 9997	0 99845	0 99805	-40				
	0.0007	0.00079	0.00041	27	LCT10.5	1.0000	0.99950	0
	0.9997	0.99978	0.99941	-37	LCT10.6	1.0000	1.00008	0.
LCT2.3	0.9997	0.99914	0.99877	-37	LCT10.7	1.0000	1.00122	1
LC12.4	0.9997	0.99870	0.99847	-23	LCT10.8	1.0000	0.99788	0
LCT2.5	0.9997	0.99772	0.99712	-60				
				-39				
					LCT17.4	1.0000	0.99803	0.
LCT5.1	1.0000	1.00265	1.00197	-68	LCT17.5	1.0000	0.99989	0.
LCT5.5	1.0000	1.00504	1.00137	-367	LCT17.6	1.0000	1.00002	0.
LCT5.12	1.0000	1.00645	1.00062	-583	LCT17.7	1.0000	0.99986	0.
				-339	LCT17.8	1.0000	0.99822	0.
				000	LCT17.9	1.0000	0.99770	0.

MCNP stochastic uncertainty is typically 10 pcm, or less.

UNCLASSIFIED

-119

(Some) ICSBEP Benchmarks with Iron

- HMF13 Spherical HEU assembly with 3.65 cm thick steel.
- HMF21 Spherical HEU assembly with 9.7 cm thick steel.
- HMF24 Spherical HEU assembly with 0.8 cm thick steel & 9.65 cm thick polyethylene.
- HMF87 HEU cylindrical assembly with interstitial steel.
- HMF88 HEU cylindrical assembly with interstitial steel or steel & polyethylene plus a polyethylene radial/axial reflector.
- LCT10, 17 & 42 multiple UO₂ rod clusters with steel reflecting walls (LCT42 also has absorber plates between clusters).
- PMF25 Spherical ²³⁹Pu assembly with 1.55 cm thick steel.
- PMF26 Spherical ²³⁹Pu assembly with 11.9 cm thick steel.
- PMF28 Spherical ²³⁹Pu assembly with 19.65 cm thick steel.
- PMF32 Spherical ²³⁹Pu assembly with 4.49 cm thick steel.

ICSBEP's HMF88.1 Geometry

HEU-MET-FAST-088, case 1 (interstitial steel with radial and axial CH_2 reflectors).

Similar benchmarks, such as HEU-MET-FAST-087, do not have axial or radial reflectors.

UNCLASSIFIED

²³⁵U, ²³⁹Pu & ⁵⁶Fe – HMF & PMF

assemblies

Benchmark	Benchmark keff	endf/b-vii.1 (e71) kcalc C/E	e71 + ²³⁵ U (19c) + ²³⁸ U (04c) + ¹⁶ O (05c)	e71 + ²³⁵ U (19c) + ²³⁸ U (04c) + ¹⁶ O (05c) + ⁵⁶ Fe (02c)	"new" - e71, pcm
HMF13	0.9990	0.99834	0.99843	0.99817	-17
HMF21	1.0000	0.99730	0.99732	0.99651	-79
HMF24	0.9990	0.99939	0.99986	0.99944	5
HMF87	0.9987	0.99970	1.00001	1.00040	70
HMF88.1	0.9993	0.99745	0.99872	0.99862	117
HMF88.2	0.9993	0.99734	0.99858	0.99782	48
Bonchmark	Benchmark	endf/b-vii.1	- 74 · ²³⁹ ··· (22-)	e71 + ²³⁹ Pu (23c)	"new" -
Deficilitark	keff	(e71) kcalc	e71+ Pu(23c)	+ ⁵⁶ Fe (02c)	e71, pcm
PMF25	1.0000	0.99880	0.99821	0.99857	-23
PMF26	1.0000	0.99845	0.99786	0.99725	-120
PMF28	1.0000	0.99896	0.99830	0.99743	-153
PMF32	1.0000	0.99862	0.99780	0.99790	-72

UNCLASSIFIED

LA-UR-15-28528

Alamos

EST.1943

NATIONAL LAB

^{235,238}U, ¹⁶O & ⁵⁶Fe – LCT assemblies

Benchmark	Benchmark keff	endf/b-vii.1 (e71) kcalc	e71 + ²³⁵ U (19c) + ²³⁸ U (04c) + ¹⁶ O (05c)	e71 + ²³⁵ U (19c) + ²³⁸ U (04c) + ¹⁶ O (05c) + ⁵⁶ Fe (02c)	"new" - e71, pcm
LCT10.9	1.0000	0.99994	0.99874	1.00001	7
LCT10.10	1.0000	1.00024	0.99920	1.00025	1
LCT10.11	1.0000	1.00062	0.99940	1.00037	-25
LCT10.12	1.0000	0.99975	0.99873	0.99939	-36
LCT10.13	1.0000	0.99758	0.99706	0.99696	-62
LCT17.10	1.0000	0.99809	0.99692	0.99742	-67
LCT17.11	1.0000	0.99842	0.99731	0.99771	-71
LCT17.12	1.0000	0.99860	0.99735	0.99731	-129
LCT17.13	1.0000	0.99881	0.99775	0.99772	-109
LCT17.14	1.0000	0.99915	0.99777	0.99810	-105
LCT42.1	1.0000	0.99816	0.99592	0.99658	-158
LCT42.2	1.0000	0.99804	0.99563	0.99608	-196
LCT42.3	1.0000	0.99897	0.99652	0.99690	-207
LCT42.4	1.0000	0.99838	0.99615	0.99622	-216
LCT42.5	1.0000	0.99930	0.99712	0.99756	-174
LCT42.6	1.0000	0.99937	0.99727	0.99780	-157
LCT42.7	1.0000	0.99776	0.99538	0.99588	-188

UNCLASSIFIED

LCT10 has the largest rod pitch (2.54 cm).

LCT17 is smaller (2.032 cm).

LCT42 is smallest (1.684 cm).

²³⁹Pu (& ¹H, ¹⁶O) – PST Benchmarks Los Alam

The average calculated eigenvalue for the Pu-SOL-THERM benchmark class has been biased high by about 500 pcm for many years (ENDF/B-VII.1 results shown).

We use a small subset of the Pu-SOL-THERM benchmark population to assess candidate files.

- PST1.4 & PST12.13 span the ATLF space.

- PST12.10 & PST34.15 span the ATFF space.

- PST4.1 & PST18.6 span the ²³⁹Pu atom percent space.

- PST12.10 & PST34.4 span the g Pu per liter space.

LA-UR-15-28528

²³⁹Pu (& ¹H, ¹⁶O) – PST Benchmarks Los Alamos

 k_{eff} C/E results with various SG34 and CIELO candidate files ...

Benchmark	Benchmark keff	e71 (with mf3/mt18 background fix)	e71 + SG34 ²³⁹ Pu	e71 + ²³⁹ Pu (23c) + ¹⁶ O (05c)
PST1.4	1.0000	1.00451	1.00209	0.99969
PST4.1	1.0000	1.00411	1.00052	0.99870
PST12.10	1.0000	1.00417	1.00078	0.99931
PST12.13	1.0000	1.00974	1.00623	1.00503
PST18.6	1.0000	1.00484	1.00195	1.00082
PST34.4	1.0000	1.00248	0.99933	0.99767
PST34.15	1.0000	0.99733	0.99719	0.99590
PST average:		1.00388	1.00116	0.99959

For ENDF, WPEC Subgroup 34 efforts eliminated ~75% of the historical *average* k_{calc} bias.

LA-UR-15-28528

On average, the latest ²³⁹Pu and ¹⁶O files eliminate the remaining bias.

PFNS Uncertainty (²³⁹Pu)

- Impact of pfns uncertainty on k_{calc} and reaction rates ...
 - Use the LANL Pu-MET-FAST-001 (Jezebel) critical assembly
 - ENDF/B-VII.1 cross sections plus a recent Neudecker ²³⁹Pu pfns yields a calculated eigenvalue of 0.99797(3).
 - Generate a suite of 1000 pfns data sets, based upon evaluated uncertainty
 - Average k_{calc} is 0.99798, *population* standard deviation is 107 pcm.
 - The standard deviation in calculated spectral indices varies from a fraction of a per cent to almost 10%, depending upon the reaction rate average energy ...
 - e.g., ${}^{239}Pu(n,f)/{}^{235}U(n,f) = 1.4203 \pm 0.0017$; ${}^{238}U(n,f)/{}^{235}U(n,f) = 0.2031 \pm 0.0022$
 - e.g., ${}^{238}U(n,2n)/{}^{235}U(n,f) = 0.0119 \pm 0.0007$; ${}^{169}Tm(n,2n)/{}^{235}U(n,f) = 0.00307 \pm 0.00029$.
 - For the Pu-SOL-THERM-001.4 critical assembly ...
 - ENDF/B-VII.1 cross sections plus a recent Neudecker ²³⁹Pu pfns yielded a calculated eigenvalue of 1.00948(6).
 - 1000 sample average is 1.01042 with a *population* standard deviation of 283 pcm (wow!).

Summary

- Work to revise the evaluated data files for ¹H, ¹⁶O, ⁵⁶Fe, ^{235,238}U and ²³⁹Pu continues …
- LANL testing to date has concentrated on ICSBEP benchmark eigenvalues. Reaction rate (spectral indices) data, pulsed sphere spectra, shielding (SINBAD) and reactor physics (IRPhEP) benchmarks are also important resources to be utilized in a comprehensive data testing regimen (and are being utilized by our international colleagues).
- New tools are becoming available to assist data testing.
 - See <u>https://www-nds.iaea.org/index-meeting-</u> <u>crp/CM_Compensating_Effects_2015/</u>, and in particular the contribution by Oscar Cabellos, OECD/NEA.
 - DICE = Database for ICSBEP & NDaST = Nuclear Data Sensitivity Tool.
- The CIELO evaluated data files are expected to be an important component in the next ENDF/B release.

