Benchmarking and Validation of CIELO Evaluated Data Files

A.Trkov¹, R.Capote¹, G. Žerovnik^{2,3} ¹ IAEA, Vienna, Austria ² JSI, Ljubljana, Slovenia ³ JRC IRMM, Geel, Belgium

Background

The IAEA is committed to:

 contribute to the international effort (the CIELO pilot project) of improving the evaluated nuclear data for the most important nuclides for the fission nuclear reactors, namely:

²³⁹Pu, ²³⁸U, ²³⁵U, ⁵⁶Fe, ¹⁶O, ¹H

• Improve the availability of validated nuclear data processing codes to the users in Member States.

²³⁸U, ²³⁵U, ⁵⁶Fe (¹⁶O Hale, H₂O CAB)

- Evaluation basic principles
- General features of the tested evaluations
- Selection of benchmarks
- Benchmark results and compensating effects
- Data processing features

Evaluation basic principles

- Use the best physics in nuclear code modelling of reaction cross sections
- Respect the differential experimental data, applying corrections due to updated standards and weeding out outliers (with justification)
- Fine-tuning of less-accurately known parameters in the evaluations based on clean integral measurements

Benchmarking is an integral part of the evaluation process!

²³⁸U – Fast energy range

Empire calculation "u238ib44"

- DCCOMP (see presentation by R. Capote)
- Matching of "Standards" fission and capture within the model to get competing reaction channels right
- Replace fission and capture with ENDF/B-VII.1 (because it agrees with the "Standards")

²³⁸U Resonance range

- ENDF/B-VII.1 starter resonance file
- New work from IRMM:
 - Modified parameters of the bound states to fit Olsen data
 - Residual function greatly reduced (no need to renormalize Olsen data)
 - No impact on benchmarks sensitive to the thermal energy range
 - No change to thermal capture cross section
 - Slight change to the elastic cross section for consistency with measured coherent scattering length

²³⁸U Resonance range (cont.)

CSEWG, Brookhaven

2-4 November 2015

²³⁸U Resonance range (cont.)

• Work at IRMM (cont.)

- New set of unresolved resonance parameters (URR) consistent with total from OMP, evaluated inelastic x.s. and "Standards" capture
- Testing of RRR-URR boundary (10 keV or 20 keV)
 - Testing on benchmarks showed no differences in results – 20 keV boundary can be adopted
- Work continues to incorporate new data and determine the covariance information

²³⁸U Resonance range (cont.)

New data to be considered in the evaluation:

- new transmission (thin & thick sample) GELINA data
- new capture data from GELINA (12 m)

Resonance analysis

- simultaneous analysis including above + transmission data from Olsen and Harvey
- still waiting for the nTOF data and LANL data in a format suitable for a resonance shape analysis.
- ENDF/B-VII.1 starter but radiation width reduced from 23 meV to 22.5 meV instead of 23 meV)

²³⁸U - PFNS

Evaluation submitted by P. Talou for the IAEA CRP on PFNS

CSEWG, Brookhaven 2-4 November 2015

²³⁸U - RPI and criticality benchmarks

- Capture and fission same as ENDF/B-VII.1
- Main changes to elastic and inelastic
- Criticality benchmarks:
 - The impact is expected to be small, mainly in assemblies reflected by ²³⁸U
 - Inelastic and elastic evaluation was guided by the RPI benchmark

²³⁸U - RPI benchmark

- The benchmark is highly selective to scattering data in the range 0.5-10 MeV
- Generally, the agreement with measurements is good
- Considerable improvement with the new evaluation
- Further information was released from RPI, some details are not yet fully understood

La contra contra

²³⁸U - criticality benchmarks (ICSBEP)

- Improvement is observed for several fast benchmarks
- There are significant compensating effects, particularly with ²³⁵U
- Big old outliers remain
- Thermal lattices are little affected by ²³⁸U, but strongly by ²³⁵U; the bias of about 300 pcm could be compensated by ²³⁸U (or ²³⁵U ?)

U-238 fast reactor benchmarks

ICSBEP name	Short name	Common name
HEU-MET-FAST-001	hmf001	Godiva
HEU-MET-FAST-028	hmf028	Flattop-25
IEU-MET-FAST-007	imf007d	Big_Ten(detailed)
PU-MET-FAST-006	pmf006	Flattop-Pu
U233-MET-FAST-006	umf006	Flattop-23
HEU-MET-FAST-002	hmf002-1	Topsy-1
IEU-MET-FAST-001	imf001-1	Jemima-1
IEU-MET-FAST-001	imf001-2	Jemima-2
IEU-MET-FAST-001	imf001-3	Jemima-3
IEU-MET-FAST-001	imf001-4	Jemima-4
PU-MET-FAST-010	pmf010	pmf010
PU-MET-FAST-012	pmf012	pmf012
PU-MET-FAST-020	pmf020	pmf020
PU-MET-FAST-041	pmf041	pmf041
MIX-MET-INTER-004	mmi004	ZPR-3/53
MIX-COMP-FAST-001	mcf001	ZPR-6/7
MIX-COMP-FAST-005	mcf005-s	ZPR-9/31
MIX-COMP-FAST-006	mcf006-s	ZPPR-2
MIX-MISC-FAST-001	mif001-09	BFS-31-4

Intermediate-enriched and ²³⁸U reflected benchmarks

	ICSBEP name	Short name	Common name
	PU-MET-FAST-026	pmf026	pmf026
	HEU-MET-FAST-061	hmf061	ZPPR-21F
	PU-MET-FAST-033	pmf033	ZPPR-21A
	HEU-MET-FAST-088	hmf088-1	hmf088-1
	HEU-MET-FAST-088	hmf088-2	hmf088-2
	PU-MET-FAST-025	pmf025	pmf025
	HEU-MET-FAST-087	hmf087	VNIITF-CTF-Fe
	HEU-COMP-INTER-003	hci003-1	COMET-UH3-1
	HEU-COMP-INTER-003	hci003-4	COMET-UH3-4
	HEU-COMP-INTER-003	hci003-6	COMET-UH3-6
	HEU-COMP-INTER-003	hci003-7	COMET-UH3-7
	HEU-MET-FAST-072	hmf072-1	ZEUS_Fe/Cu-1
	HEU-MET-FAST-072	hmf072-3	ZEUS_Fe/Cu-3
	HEU-MET-FAST-084	hmf084-14	Comet-W_1.0in
	HEU-MET-FAST-084	hmf084-25	Comet-W_0.5in
	PU-MET-FAST-032	pmf032	pmf032
	HEU-MET-FAST-013	hmf013	VNIITF-CTF-SS-13
	IEU-MET-FAST-005	imf005	VNIIEF-CTF-5
	IEU-MET-FAST-005	imf005-s	VNIIEF-CTF-5s
	HEU-MET-FAST-021	hmf021	VNIITF-CTF-SS-21
	HEU-MET-FAST-085	hmf085-5	Comet-Th_2in
	PU-MET-FAST-028	pmf028	pmf028
4	PU-MET-FAST-026	pmf026	pmf026

B

Thermal lattices and solutions

ICSBEP name	Short name	Common name
LEU-COMP-THERM-008	lct008-01	BW-XI-01
LEU-COMP-THERM-008	lct008-02	BW-XI-02
LEU-COMP-THERM-008	lct008-05	BW-XI-05
LEU-COMP-THERM-008	lct008-07	BW-XI-07
LEU-COMP-THERM-008	lct008-08	BW-XI-08
LEU-COMP-THERM-008	lct008-11	BW-XI-11
LEU-SOL-THERM-002	lst002-1	ORNL-UO2F2-1
LEU-SOL-THERM-002	lst002-2	ORNL-UO2F2-2
LEU-SOL-THERM-002	lst002-3	ORNL-UO2F2-3
LEU-SOL-THERM-007	lst007-14	STACY-14
LEU-SOL-THERM-007	lst007-30	STACY-30
LEU-SOL-THERM-007	lst007-32	STACY-32
LEU-SOL-THERM-007	lst007-36	STACY-36
LEU-SOL-THERM-007	lst007-49	STACY-49
IEU-MET-FAST-005	imf005	VNIIEF-CTF-5
IEU-MET-FAST-006	imf006	VNIIEF-CTF-6
LEU-COMP-THERM-042	lct042-1	lct042-1
LEU-COMP-THERM-042	lct042-2	lct042-2
LEU-COMP-THERM-043	lct043-2	IPEN/MB-01
LEU-MET-THERM-015	lmt015	RB-Vinca(15)
LEU-MET-THERM-001	lmt001	RB-Vinca(1)

-4 November 2015

E

- - - - - - - -

²³⁵U – Fast energy range

- Empire calculation "u235ib02"
 - Model calculation similar to ²³⁸U
 - Matching of "Standards" fission within the model to get competing reaction channels right
 - Replace fission and capture with ENDF/B-VII.1 (because fission agrees with the "Standards")

²³⁵U Resonance range

- Evaluation "ornl.v4" by L. Leal superseded by new evaluations:
 - "i1" matching approximately the thermal constants for Standards-2015 "mic.+mac.", which are similar to the constants adopted in Standards-2006
 - "i2" matching the thermal constants for Standards-2015 "mic. Only"

²³⁵U - PFNS

- GMA fit for Standards-2015 for incident thermal neutrons
- Evaluation submitted by P. Talou for the IAEA CRP on PFNS at higher energies

New evaluation has significantly lower average neutron energy for all incident neutron energies (see presentation by Chadwick)

CSEWG, Brookhaven 2-4 November 2015

²³⁵U - criticality benchmarks (ICSBEP)

- Decrease of inelastic cross section requires a 0.2% increase of nu-bar in 0.5-1 MeV range to restore performance for bare assemblies
- Lowering of E_{av} of PFNS has far-reaching consequences; reactivity of high-leakage HEU solutions increases greatly
- Performance is restored by changes to nu-bar (in accordance with "mic" Standards-2015")
- ATLF-dependence improved by lowering nu-bar around the first resonance; same effect could (probably) be achieved by increasing alpha in the low-lying resonances

²³⁵U bare assemblies

ICSBEP Short name name hmf001 HEU-MET-FAST-001 HEU-MET-FAST-008 hmf008 hmf018 HEU-MET-FAST-018 HEU-MET-FAST-051 hmf051-01 HEU-MET-FAST-051 hmf051-02 HEU-MET-FAST-051 hmf051-03 hmf051-15 HEU-MET-FAST-051 HEU-MET-FAST-051 hmf051-16 HEU-MET-FAST-051 hmf051-17 HEU-MET-FAST-100 hmf100-1 hmf100-2 HEU-MET-FAST-100

Common name Godiva VNIIEF-CTF-bare VNIIEF Sphere ORCEF-01ORCEF-02 ORCEF-03 ORCEF-15 ORCEF-16 ORCEF-17 ORSphere-1 ORSphere-2

. . . .

²³⁵U - criticality benchmarks (Cont.)

Fitting ATLF is tricky and subjective:

- LANL
 - fit C/E, unweighted
- IAEA
 - fit delta_k,
 - exclude hst043, hst050 (highly scattered)
 - Use benchmark uncertainties for weights

²³⁵U - criticality benchmarks (Cont.)

A few surprizes?

- UH3 benchmarks show large positive reactivity swing (reason yet unknown)
- ZPR-9/34 is sensitive to capture in ²³⁵U as well as capture in Fe
- Thermal lattices are underpredicted
- Compensating effect between materials are very important

Outliers

ICSBEP Short name name Common HEU-COMP-INTER-003 hci003-1 HEU-COMP-INTER-003 hci003-4 hci003-6 HEU-COMP-INTER-003 HEU-COMP-INTER-003 hci003-7 HEU-MET-INTER-001 hmi001 lct008-01 LEU-COMP-THERM-008 BW-XI-1 BW-XI-2 LEU-COMP-THERM-008 lct008-02 LEU-COMP-THERM-008 lct008-05 BW-XI-5 LEU-COMP-THERM-008 lct008-07 BW-XI-7 lct008-08 LEU-COMP-THERM-008 BW-XI-8 lct008-11 LEU-COMP-THERM-008 BW-XI-11 LEU-COMP-THERM-042 lct042-1 lct042-1 LEU-COMP-THERM-042 1ct.042-2lct042-2 EU-COMP-THERM-043 lct043-2 TPEN/MR-CSEWG. Brookhaven

name COMET-UH3-1 COMET-UH3-4 COMET-UH3-6 COMET-UH3-7 ZPR-9/34

-, -- -- -

⁵⁶Fe – Evaluation features

• "ib04s"

- Empire calculation Version 4 in the fast energy range
- ORNL resonance parameters Version 4 up to 2 MeV
- Smoothed angular from resonance parameters
- "c88"
 - Empire calculation in the fast energy range
 - Updated resonance parameters, reduced to 846 keV
 - JENDL-4.0 angular distributions in the resonance range
 - Cross sections and ang. distr. Up to 2 MeV from JEFF-3.2
- Another updated set of resonance data available, but not tested.

⁵⁶Fe - Criticality Benchmarks (ICSBEP)

- Benchmarks most sensitive to Fe capture and scattering, respectively
- UH3 benchmarks sensitive to capture and scattering

Benchmarks sensitive to 56Fe capture

Short name Common name ICSBEP name MIX-COMP-FAST-001 mcf001 ZPR-6/7MIX-COMP-FAST-006 mcf006-s ZPPR-2 MIX-COMP-FAST-005 mcf005 ZPR-9/31 mcf005-s ZPR-9/31 MIX-COMP-FAST-005 ici005 IEU-COMP-INTER-005 ZPR-6/6AZEUS Fe/Cu-1 HEU-MET-FAST-072 hmf072-1 ZEUS Fe/Cu-3 HEU-MET-FAST-072 hmf072-3 imf012 ZPR-3/41 IEU-MET-FAST-012 MIX-MISC-FAST-002 mif002-1 BFS-49/1A MTX-MTSC-FAST-001 mif001-01 BFS-35-1 BFS-35-2 mif001-02 MIX-MISC-FAST-001 MIX-MISC-FAST-001 mif001-03 BFS-35-3 mif001-09 BFS-31-4 MIX-MISC-FAST-001 BFS-31-5 mif001-10 MIX-MISC-FAST-001 MIX-MISC-FAST-001 mif001-11 BFS-42 IEU-MET-FAST-010 imf010 ZPR - 6/9(U9)

CSEWG, Brookhaven

Benchmarks sensitive to 56Fe scattering

ICSBEP name Short name Common name PU-MET-FAST-026 pmf026 pmf026 hmf061 HEU-MET-FAST-061 ZPPR-21F pmf033 ZPPR-21A PU-MET-FAST-033 hmf088-1 hmf088-1 HEU-MET-FAST-088 HEU-MET-FAST-088 hmf088-2 hmf088-2 PU-MET-FAST-025 pmf025 pmf025 hmf087 HEU-MET-FAST-087 VNIITF-CTF-Fe hci003-1 HEU-COMP-INTER-003 COMET-UH3-1 HEU-COMP-INTER-003 hci003-4 COMET-UH3-4 HEU-COMP-INTER-003 hci003-6 COMET-UH3-6 HEU-COMP-INTER-003 hci003-7 COMET-UH3-7 ZEUS Fe/Cu-1 HEU-MET-FAST-072 hmf072-1 ZEUS Fe/Cu-3 HEU-MET-FAST-072 hmf072-3 Comet-W 1.0in HEU-MET-FAST-084 hmf084-14 Comet-W 0.5in HEU-MET-FAST-084 hmf084-25

Benchmarks sensitive to 56Fe scattering

PU-MET-FAST-032 pmf032 pmf032	
HEU-MET-FAST-013 hmf013 VNIITF-CTF-SS-	-13
IEU-MET-FAST-005 imf005 VNIIEF-CTF-5	
IEU-MET-FAST-005 imf005-s VNIIEF-CTF-5s	
HEU-MET-FAST-021 hmf021 VNIITF-CTF-SS-	-21
HEU-MET-FAST-085 hmf085-5 Comet-Th_2in	
PU-MET-FAST-028 pmf028 pmf028	
PU-MET-FAST-026 pmf026 pmf026	

ENDF Request 184, 2015-Oct-29,15:48:31

- HEU-MET-INTER-001-001 capture u-235 - HEU-MET-INTER-001-001 capture fe-0

~ ~ ~

- - - -

⁵⁶Fe - Shielding benchmarks (SINBAD)

Evaluations taken into consideration:

- Basis file: ENDF/B-VII.1
- CIELO project intermediate files:
 - Ib04s, Ib88
- C/E comparison
- Calculations performed with MCNP v6.1
- Default libraries:
 - ENDF/B-VII.1 (transport), IRDFF v1.05 (dosimetry)

⁵⁶Fe - Shielding benchmarks (cont.)

SINBAD benchmarks sensitive to Fe:

- EURACOS Fe (abs.+rel. C/E comparison)
- ASPIS:
 - JANUS-1 (rel.)
 - NESDIP-2
 - NESDIP-3 (rel.)
- IPPE Fe spheres
- OKTAVIAN Fe

General Features of EURACOS Fe

- TRIGA thermal column n. source, converted to fast by fission plate
- Attenuation in Fe
- Reaction rate axial distributions (as a function of depth in Fe):
 - ³²S(n,p)
 - ¹⁹⁷Au(n,γ) under Cd
 - ¹⁰³Rh(n,n') measurements normalized to the first value
 - ¹¹⁵In(n,n')
- Experimental uncertainties:
 - Source (spectrum and spatial distribution)
 - Room return

EURACOS MCNP model (recent progress)

- Re-definition of the neutron source
- Improved variance reduction techniques
- Sensitivity study:
 - Source fission spectrum
 - Source positioning (in fission plate, before the fission plate, . . .)
 - Source (radial) distribution
 - Impurities in Fe
- Modelling of new activation detectors
- Neutron spectra calculations

Experimental setup

Fig. 2 Vertical and horizontal cross section of iron assembly including the Euracos II facility

Data processing

- Practically all benchmarking goes through NJOY processing – potential danger of "common mode failure"
- For example, differences in the self-shielded cross sections calculated with UNRESR and PURR from NJOY and GRUCON...
- There could be more...

Self-shielded cross sections

Summary for ²³⁸U

- Evaluation in the fast range is stable; no great changes are expected
- URR evaluation is completed (IRMM)
- RRR evaluation with minor improvements is pending (IRMM)
- Evaluation will be finalised when the ²³⁵U evaluation reaches maturity

Summary for ²³⁵U

- New PFNS is a large perturbation to the evaluation, requiring extensive changes elsewhere
- Evaluation in the fast energy range can be refined (particularly inelastic)
- Two options for resonance evaluation are under investigation.
- Performance comparable to ENDF/B-VII.1 is achievable, but we want to do better
- There are outliers, which perform worse

Summary for ⁵⁶Fe

- Evaluation in the fast energy range can be improved (waiting for the release of RPI data), extended to 150 MeV and to the minor isotopes
- Extension of RRR to 2 MeV is challenging
- We are still gaining experience on the use of detailed angular distributions reconstructed from resonance parameters
- The goal of performance better than ENDF/B-VII.1 is not reached yet

Additional benchmarks results for Fe

CSEWG, Brookhaven 2-4 November 2015

General Features of ASPIS JANUS-1

- NESTOR graphite reflector n. source, converted by fission plate
- Attenuation in stainless and mild steel
- Reaction rate axial and lateral distributions:
 - ³²S(n,p)
 - ⁵⁵Mn(n,γ) under Cd
 - ¹⁹⁷Au(n,γ) under Cd
 - ¹⁰³Rh(n,n')
- For lateral distributions, no exp. unc. given!

Measurement positions

Penertration measurements are located on the nuclear centre line as defined below

怒

All components are 182.9cm wide by 191.0cm high

Dimensions Represent Nominal Material Thicknesses in cm

Not To Scale

General Features of ASPIS NESDIP-3

- NESTOR graphite reflector, neutron source converted by fission plate
- Attenuation in mild steel, SS, and water (simulating PWR shielding)
- Reaction rate axial distributions:
 - ³²S(n,p)
 - ¹⁰³Rh(n,n')

Measurement positions

FIGURE 2 MEASUREMENT LOCATIONS IN THE 18/20 NESDIP ARRAY

