Re-analysis of the Rossendorfer Ringzonen-Reaktor/Schnelles Einsatz-Gitter Experiments

Andrew Hummel Idaho National Laboratory

<u>www.inl.gov</u>

US National Nuclear Data Week Brookhaven National Laboratory November 2 – 6, 2015

- Rossendorfer Ringzonen-Reaktor (RRR)
 - Zero power Argonaut type reactor consisting of an annular core
 - Criticality reached December 16, 1962
 - Thermal driver fuel zone:
 - 60 %U₃O₈ / 40% AI (20% U-235)
 - Contained both outer and inner graphite reflectors
- Schnelles Einsatz-Gitter (SEG)
 - Fast insertion lattice deployed in 1972
 - Al or Fe matrix filled with varying pellets (unit cells)
 - 7 primary configurations
 - Initial focus on SEG 4 7: Measurements/data on structural materials and fission products

Lehmann et al [2]

SEG 6 insertion lattice and small sample disks

Integral experimental setup used to perform small sample reactivity measurements

- Annular driver zone consists of 24 rectangular cassettes with a max of 12 fuel sections of 6 pins in each cassette
 - 24 triangular graphite wedges fill in between; water moderated
- This zone is treated homogenously since the exact number of fuel sections varies (and is unknown); vary the radius to achieve criticality

Pile Oscillator Method for Measurement

Dietze et al [4]

- Pneumatically driven with a 20.48 second period, 80cm stroke
- Depends on reactor power, number of measured periods, and reproducibility
- Measured background and reactivity effect simultaneously

 PUWO oscillator

Description of Measurements

- The pile oscillator method was used to measure reactivity effects
 - +/- 0.3 millicents (~0.00219 pcm) accuracy of method
 - +/- 0.1 millicents (~0.00073 pcm) inherent accuracy due to reactor drift behavior
- Oscillating AI tube filled with graphite and samples placed in graphite containers
 - Oscillated against dummy graphite containers "clean experiments"
- Boron ionization chamber detected the flux response
- "Reactivity and the total neutron population undergo oscillations with the same frequency as the oscillations of the sample" (Foell – 1972)
- "The sample reactivity is identical with the reactivity difference in the two oscillator positions" (Dietze – 1993)

Spectral Characteristics

 Adjoint exhibits a depression around 10 keV with rapid increases to higher and lower energies

- Different pellet arrangements in the SEG lattice lead to both hard and soft neutron spectrums and different adjoint function shapes

 Obtain separate capture and scattering information
- Measured through pseudo-reactivity worths of different radioactive neutron sources in central channel

SEG Pellet Unit Cells

• SEG 4/5: energy-independent adjoint spectrum (reduce U-238 content)

 Slowing down effect disappears: i.e. the reactivity change is due only to capture

• SEG 6 EK-10/EK-45: monotonously rising adjoint function

 Hard neutron spectrum with a dominant, negative scattering effect: suitable for inelastic scattering data

SEG 6 \longrightarrow no unit cell (radial arrangement of nat U and 36% U)

• SEG 7A/7B: similar to SEG 4/5 but have softer neutron spectrums (PE)

- Capture and scattering effects are negative

PE=polyethylene

• SEG 4, 5, & 7 lattice

- 72 holes in a six-angular arrangement
- Central channel filled with graphite and sample material
- Pellets grouped in unit cells fill holes

Craphite converter

surrounded by annular driver fuel

• SEG 6 lattice

- Radial arrangement of 4 rings each having 12 channels
- Inner ring: 36% enriched
- Outer 3 rings: natural U
- Inner absorption zone:
 B₄C
- Experimental channel is either 5.0 or 1.2 cm in diameter

 Natural U converter surrounded by annular
 driver fuel

RRR/SEG Critical Configurations

- With the SEG lattice inserted, criticality is achieved by varying the radius of the annular homogenized driver (r_d)
 - Results obtained using MCNP6.1 and ENDF/B-VII.I cross section library

SEG 4:	$k_{eff} = 1.00029$,	0.00003	,	$r_d = 10.00 \ cm$
SEG 5:	$k_{eff} = 1.00026$,	0.00003	J	$r_d = 9.10 \ cm$
SEG 6 EK-10:	$k_{eff} = 1.00015$,	0.00003	J	$r_d = 11.20 \ cm$
SEG 6 EK-45:	$k_{eff} = 1.00020$,	0.00003	J	$r_d = 11.20 \ cm$
SEG 7A:	$k_{eff} = 0.99956$,	0.00003	J	$r_d = 10.55 \ cm$
SEG 7B:	$k_{eff} = 1.00050$,	0.00003	,	$r_d = 8.75 \ cm$

Experimental Flux and Adjoint Spectrums

MCNP6.1 Calculated Flux and Adjoint Spectrums

Experimental Flux and Adjoint Spectrums

MCNP6.1 Calculated Flux and Adjoint Spectrums

Sample Materials/Measurements of Interest

	SEG 4	SEG 5	SEG 7A	SEG 7B	
Material	Central Reactivity Worth (pcm)				
B ₄ C (81% B-10)	-2.604 ± 0.0074	-2.7328 ± 0.0052	-1.4570 ± 0.0029	-1.9548 ± 0.0036	
B₄C (natural)	-	-	-4.0297	-2.6875 ± 0.0036	
U ₃ O ₈	0.1406 ± 0.0022	0.1604 ± 0.0022	0.1409 ± 0.0022	0.2165 ± 0.0022	
U	-	0.4983 ± 0.0044	-		
(89.5% enr.)					
U (36% enr.)	-	3.3915	-	-	
U (nat)	-	-0.2517 ± 0.0044	-0.1292 ± 0.0037	-0.1803 ± 0.0036	
Mo-95	-0.3966 ± 0.0185	-0.4232 ± 0.0096	-0.0184 ± 0.0022	-0.0232 ± 0.0022	
Mo-97	-0.3804 ± 0.0096	-0.4342 ± 0.0096	-0.0162 ± 0.0022	-0.0203 ± 0.0022	
Mo-98	-0.1354 ± 0.0148	-0.1192 ± 0.0096	-0.0051 ± 0.0022	-0.0101 ± 0.0022	
Mo-100	-0.0770 ± 0.0059	-0.0839 ± 0.0066	-0.0264 ± 0.0022	-0.021 ± 0.0022	
Rh-103	-0.3678	-0.3717 ± 0.0029	-0.1908 ± 0.0022	-0.2766 ± 0.0029	
Pd-105	-0.6112 ± 0.0074	-0.6484 ± 0.0052	-	-	
Cs-133	-0.4211 ± 0.0148	-0.4203 ± 0.0037	-	-	
Ag-109	-0.6135 ± 0.0118	-0.4740 ± 0.0044	-0.0499 ± 0.0022	-0.0898 ± 0.0022	
Sm-149	-2.3532 ± 0.037	-2.1175 ± 0.0103	-0.1108 ± 0.0022	-0.1948 ± 0.0029	
Eu-153	-2.2540 ± 0.0318	-2.0093 ± 0.0155	-	-	
Та	-	-4.7494	-0.6878 ± 0.0037	-2.1923 ± 0.0036	
Nb	-	-1.4161 ± 0.0052	-	-0.8102 ± 0.0029	
Со	-	-0.4055 ± 0.0044	-	-	
Cd	-	-1.7635 ± 0.0052	-	-1.8426 ± 0.0036	
Fe	-	-0.2105 ± 0.0044	-	-0.2266 ± 0.0029	
Ni	-	-0.4968 ± 0.0037	-	-	
Мо	-	-0.6094 ± 0.0037	-	-0.4663 ± 0.0036	
Mn	-	-0.3827 ± 0.0029	-	-	
Au	-	-0.7220 ± 0.0029	-	-	
Cu	-	-0.5483	-	-	
Zr	-	-0.1450 ± 0.0044	-	-	
W	-	-1.5250 ± 0.0044	-	-	
С	-	-	-0.1395 ± 0.0029	-0.1187 ± 0.0029	

	SEG 6 (EK-10)	SEG 6 (EK-45)		
Material	Central Reactivit	ty Worth <mark>(pcm/gram)</mark>		
B ₄ C (81% B-10)	-0.4120 ± 0.0075	-0.4644		
B ₄ C (90% B-10)	-	-		
B₄C (natural)	-0.1258 ± 0.0045	-0.1236 ± 0.0030		
B-10	-0.6374			
U ₃ O ₈	-	0.0360		
(90% U-235)				
U-235	-	0.0816		
U-238	-	0.0053		
Мо	-0.01146	-0.01273		
Fe	-0.00899	-0.00914		
Cr	0	-0.00906		
Ni	-0.01138	-0.01161		
Al	-0.01565	-0.01498		
Zr	-0.00742	-0.00756		
Ti	-0.01213	-0.01446		
Cd	-0.01281	-0.01416		
Pb	-0.00202	-0.0024		
Bi	-0.00217	-0.00225		
Mg	-0.02269	-0.02254		
Be	-0.10112	-0.10516		
W	-0.00944	-0.01004		
Cu	-0.01049	-0.01086		
Rh	-0.0215	-		
Mn	-	-0.01146		
Та	-	-0.0161		
V	-	-0.01431		
Si	-	-0.01363		
Nb	-	-1.46804		
Со	-	-0.00936		
H-10	-7.9318	-8.2315		
Polyethelene	-1.1834 ± 0.0037	-1.2284		
Polyethelene (D)	-0.3970 ± 0.0075	0.3970 ± 0.0112		
H ₂ O	-0.9587 ± 0.0037	-0.9617 ± 0.0037		
D ₂ O	-0.2959 ± 0.0030	-0.3003 ± 0.0037		
C	-0.0528 ± 0.0004	-0.0551 ± 0.0004		

SEG 6 sample masses only found for B_4C , U_3O_{8} , C, and PE samples

Current Status and Future Work

- Sample reactivity effects were not observable using MCNP6.1
 - Larger samples
 - Sensitivity coefficients
- Continue analysis using TRIPOLI capable of exact perturbation calculations
 - Develop accurate geometric models
 - Verify adjoint shapes
 - Calculate and compare central reactivity worths
- Compile experimental results for absorption and scattering measurements
- Sensitivity/uncertainty analysis

Acknowledgments

- Giuseppe (Pino) Palmiotti
- Massimo (Max) Salvatores
- John D. Bess