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UMC 
Unified Monte Carlo 

The Concept 
 
• Assume that knowledge about a set of nuclear observable 

parameters employed in nuclear system analyses can be 
represented by a multi-variate master probability function.  

 
• This function should be constructed by incorporating the best 

available information from theory and experiments. 
 
• The master function is then sampled using Monte Carlo methods 

to generate a Markov Chain of  random observable parameter 
vectors that ultimately can be employed for a variety of practical 
applications such as generating evaluations and analyzing the 
behavior of derived nuclear system parameters. 



Master Probability Density Function 

Bayes Theorem:   p(x|T,E) = p0(x|T) L(x|T,E) 
 
• “T” signifies prior information based on theory (modeling). 
 
• “E” denotes independent information from experiments that 

serves to improve (or augment) prior theoretical knowledge T. 
 
• “x” represents random vectors corresponding to possible values 

of the nuclear observables (e.g., cross sections). 
 
• The prior probability function p0 is based on theory, while 

likelihood L is a probability function that quantifies the 
consistency of data from theory and experiments used to 
construct the master (posterior) probability function p(x|T,E). 



Prior Probability Function p0(x|T) 

• T is a complicated algorithm that maps theoretical model 
parameters q to calculated observables x, i.e., x = T(q). 

  
• By applying Monte Carlo techniques, a Markov Chain of vectors qk 

can be generated by random sampling of parameters in space 
S(q) governed by a probability function r0(q). Usually, mean 
values q0 and covariance matrix Vq are specified. Then, Maximum 
Entropy suggests r0 should be a normal probability function. 

 
• A Markov chain of values xk in observables space S(x) is 

generated by Monte Carlo sampling according to xk = T(qk). 
 
• The collection {xk} reflects the prior probability function p0, but 

rarely (if ever) can p0 be expressed explicitly as an analytical 
function that can be sampled in a conventional way! 



S{x} 

S{q} 
qk 

p0(x|T) > 0 

L(x|T,E) > 0 
p0(x|T) ≈ 0 

L(x|T,E) ≈ 0 

· 

· xk 

r0(q) > 0 

xk = T(qk)  

p0(x|T) and L(x|T,E) > 0 
so p(x|T,E) > 0 

r0(q) ≈ 0 

Topology Issues 
 
The schematic diagram 
shows mapping from space 
S{q} to space S{x} by the 
theoretical (model) 
algorithm T. The shaded 
areas denote regions of 
non-negligible probability 
for r0 (green) and p0 (blue). 
 

The region enclosed by a red dashed circle 
indicates that portion of space S{x} where the 
likelihood function L(x|T,E) is non-negligible. 
In the region labeled Overlap, where “blue” 
and “red” dashed circles intersect, the master 
(posterior) function is also non-negligible. 



UMC-G: Analytical Approximation to p0(x|T) 
 

D.L. Smith, Proceedings of AccApp’07, Pocatello, ID, July 29 – August 2, 2007, Amer. Nucl. Soc. , p. 736. 
 

• The collection of K calculated observable parameter vectors {xk} generated by 
Monte Carlo (see preceding two slides), according to the mapping xk = T(qk), is 
used to calculate mean values x0 and covariance matrix Vx via the formulas: 

x0i ≈ (∑k=1,K xik) / K  and  (Vx)ij ≈ [(∑k=1,K xik xjk) / K] - x0i x0j  (K is very large). 
 
• The “true” prior probability function p0(x|T) typically is approximated by a 

multi-variate normal probability function given by: 
p0(x|T) ≈ C exp {-(½)[(x – x0)T Vx

-1 (x – x0)]}     (C is a normalization constant). 
 
Advantage: A lengthy Markov Chain of sample values is thus replaced by an 
analytical approximation having the same mean values and covariance matrix. 
This yields a master (posterior) function p(x|T,E) that can be sampled readily by 
conventional Monte Carlo methods, e.g., “Brute Force” or “Metropolis-Hastings”. 
 
Disadvantage: This approximation discards all information pertaining to higher-
order distribution moments inherent in the Monte Carlo generated Markov chain 
{xk}. This rejection of information can lead to significant biases in cases where 
non-linear effects and distribution skewness and kurtosis are present. 



UMC-B: Information in p0(x|T) is Preserved 
 

R. Capote et al., Proceedings of ISRD-14, Breton Woods, NH, May 22 – 27, 2011, ASTM STP-1550, p. 179. 
 

• The collection of K calculated observable parameter vectors {xk} generated by 
Monte Carlo (shown in two earlier slides), according to the mapping xk = T(qk), is 
preserved. Thus, no information on higher-order moments of p0 is discarded. 
 

• For each xk, a scalar weighting factor ωk is generated according to the 
expression: ωk = L(xk|T,E). Thus, the worth that is assigned to each MC sampled 
parameter vector xk is based on its consistency with available experimental 
data, as reflected in the likelihood function. 
 

• For very large K, it is assumed that mean values and covariance matrix for the 
master (posterior) probability function p(x|T,E) are estimated from: 
x0i ≈ (∑k=1,K ωkxik) / (∑k=1,K ωk)  and  (Vx)ij ≈ [(∑k=1,K ωk xik xjk) / (∑k=1,K ωk)] - x0i x0j 

 
• The Markov Chain for UMC-B thus consists of the set of pairs {xk,ωk}. These 

values can be used for nuclear systems applications as well as evaluations. 
 

Advantage: All information in function p0(x|T) is clearly preserved, including that 
related to non-linearity as well as the distribution skewness and kurtosis. 



A Closer Look at UMC-G and UMC-B 

L(x|T,E) > 0 

p0(x|T) > 0 

p0(x|T) and L(x|T,E) > 0 
so p(x|T,E) > 0 

• The areas enclosed by “blue” and “red” dashed 
circles, respectively, indicate regions of non-
negligible probability for the model-generated 
prior probability and the likelihood function 
that quantifies the consistency of theory and 
experiment. 
 

• The small region Overlap of these two circles is 
indicative of data inconsistency. Such an 
outcome could have potentially negative 
implications for an application of the UMC-B 
method (e.g., limited or biased sampling of the 
sparsely sampled region Overlap). Statistical 
inadequacy is not a problem in applying the 
UMC-G approach, but it can suffer from 
significant bias effects due to the explicit 
rejection of higher-order moments of p0(x|T). 
Data inconsistency between theory and 
experiment will inevitably lead to evaluations 
and system analysis results that are very 
questionable and thus inherently unreliable. 

Unfinished Business 
 

• Further investigation of the mentioned 
sampling issues for the region Overlap in 
the UMC-B approach is warranted. 

• Detailed inter-comparisons of GLS, UMC-
G, and UMC-B predictions for extreme 

cases and inconsistent data are needed.  

Yikes! The region 
Overlap is very small, 
probably due to poor 
agreement between 

theory and 
experiments. 
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UMC-G Plus: A New Option? 

• The original UMC-G formulation discards potentially valuable information 
about higher moments of the prior probability p0(x|T) that is reflected in the 
Markov Chain of vectors {xk} generated by Monte Carlo sampling. 

 
• It is unlikely that the moments of p0 of higher order than mean values, 

covariances, skewness, and kurtosis will affect applications significantly. 
 

• The moments of p0 (mean values, covariances, skewness, and kurtosis) can be 
estimated using the collection of sample vectors {xk}. 

Suggestion: Perhaps analytical functions 
might be found whose parameters can be 
adjusted to approximate the distribution 
moments deduced from {xk}. It could then 
be employed to serve as a surrogate  for 
the master (posterior) probability function 
p(x|T,E), and it would then be sampled 
using conventional Monte Carlo methods. 

Unfinished Business 
 

• Investigate the structure of realistic MC-
generated distributions p0(x|T) with the 
intent of quantifying typical mean values, 
covariances, skewness, and kurtosis. 

• Identify families of analytical mathematical 
functions that might serve as surrogates for 
representing the MC-generated distributions 
p0(x|T) with greater fidelity than using a 

simple normal distribution (as in UMC-G).  



Thoughts on Likelihood Functions L(x|T,E) 
• Available experimental data are usually comprised of mean values and (far less often) 

covariances. Therefore, comparisons between theoretically calculated observables and 
experimental observables should involve at most mean values and covariances. 
 

• Consequently, the likelihood function L(x|T,E), in accordance with Maximum Entropy, 
should be an appropriately constructed normal probability function. In particular, it 
should have the form: 

L(x|T,E) = C exp {-(½)[(y – yE)T VE
-1 (y – yE)]}     (C is a normalization constant) 

 

Note: yE is an experimental data vector with covariance matrix VE. Furthermore, y = f(x), 
since what is measured (y) may not correspond directly to the observable parameters (x) 
that are being considered. The function collection “f” establishes how x and y are related. 
 

• It may be very difficult to construct a rigorous likelihood function L(x|T,E) in any given 
situation due to one or more of the following limitations: i) incomplete data, ii) 
discrepant (wrong) data, iii) weak sensitivity relationships between the data (y) and 
parameters of interest (x), and iv) excessive computational overhead. 

Alternatives: Because of these limitations, some 
investigators (notably A. Koning and D. Rochman) 
for pragmatic reasons have investigated using 
simpler alternative likelihood functions L(x|T,E). 

Unfinished Business 
 

• The impact of experimental data quality 
and availability on applications of UMC 
needs to be investigated thoroughly.  

• Improve experimental covariance data. 



The UMC Approach at a Crossroads? 
 

 There are unresolved technical issues and unanswered questions. 
The way forward to further develop UMC must be clarified. 
 

• Would UMC-G and UMC-B be truly comparable if p0(x|T) could be 
expressed exactly as an analytical function? 

• Can more sophisticated analytical function approximations to a 
MC prior than the normal distribution be found (e.g., UMC-G Plus)? 

• Are the available experimental data sufficiently accurate and 
comprehensive to be useful in practice for applying UMC? 

• Can better theoretical models be developed to reduce the 
discrepancies between theory and quality experimental data? 

• If not, can model-defects formalisms be developed as practical 
measures to cope with model vs. experimental data discrepancies? 

• How much extra “value” does UMC contribute, compared with 
GLSQ, to justify the additional effort and computational burden? 



The End 


