SAMMY Modernization

Goran Arbanas, ORNL Doro Wiarda,ORNL Vlad Sobes, ORNL

Mike E. Dunn, ORNL

Cross Section Evaluation Working Group, U.S. National Nuclear Data Week 2015 BNL, November 2-6, 2015

ORNL is managed by UT-Battelle for the US Department of Energy

ational Laboratory

Overview

- Integration into SCALE SQA
- Supported platforms
- New Features
 - SAMINT
 - New detector resolution functions

Integration into SCALE SQA:

- Version control of source code and test cases using Mercurial
- Bug tracking and workflow
- Cmake: auto configuration build (make –j)
- 25 executables built automatically on several platforms
- Ctest: auto testing tool
 - Test whether result are within a prescribed tolerance (1E-4)
 - SAMMY files tested: LST, PAR, LPT...
 - Makes it much easier to notice discrepancies.
 - 178 test cases from SAMMY 8.0.0 and
 - 4 new test cases for SAMINT
 - 1 new test case for RPI Lithium Glass detector resolution function
 - (All test cases include subcases.)

Supported platforms

- Mac: gfortran
- Linux: gfortran, ifort
- Windows: ifort
 - Revealed few remaining issues that were corrected

SAMINT: Nuclear Data Adjustment Based on Integral Experiments

- SAMINT is an auxiliary program designed to allow SAMMY to adjust nuclear data parameters based on integral data.
- Allow coupling of differential and integral data evaluation in a continuous-energy framework
- Update the parameters of a resolved resonance region evaluation directly based on integral benchmark experiments
- http://www.osti.gov/scitech/biblio/1185560/

Integral Experiments to Aid Nuclear Data Evaluation

- SAMINT can be used to extract information from integral benchmarks to aid the nuclear data evaluation process.
- Near the end of the evaluation based on differential experimental data, integral data can be used to:
 - Resolve remaining ambiguity between differential data sets
 - Guide the evaluator to troublesome energy regions
 - Inform the evaluator of the most important nuclear data parameters to integral benchmark calculations
 - Improve the nuclear data covariance matrix evaluation

SAMINT Release Through RSICC

- SAMINT will now be distributed with the SAMMY code from RSICC! <u>https://rsicc.ornl.gov/</u>
- Optional, compile-time inclusion
- All linear algebra using LAPACK/BLAS
- Mac, Linux, Windows
- Version control

Case Name	SAMINT Capability	Sensitivity Code	Notes
tr181	 Resonance Parameter updating Eta updating with correlations Eta updating without correlations Integral experiment covariance matrix 	CE TSUNAMI-3D	Independently confirmed by MATLAB calculations
tr182	- ⁵⁶ Fe case - Fitting resonance parameters with inelastic channel open	MCNP6	Compilation comes form appearance of zero cross- sections due to threshold reactions
tr183	 ²³⁹Pu case Fitting resonance parameter and nu-bar simultaneously Independent eta updating 	MCNP6	

⁶Li-glass Neutron Detector Array MELINDA

- Improved parameterization
 - Based on MCNP simulations by Amanda Youmans (RPI) •

Before:
$$I(l) = \begin{cases} Dg & for \ 0 < t < d \\ De^{-f(t-d)} & for \ d < t \end{cases}$$

After:

 $d(E) = d_0 + \ln(E) * (d_1 + d_2 * \ln(E))$ $f(E) = f_0 + \ln(E) * (f_1 + f_2 * \ln(E))$ National Laboratory

8600

Liquid Scintillator Detector liquid CH_{1.212}

- Based on MCNP simulations by Amanda Youmans (RPI)

Table IV: Cross Sections for EJ-301 SAMMY Input				
Energy [eV]	Cross section [b]			
500,000	7.967348			
600,000	6.963397			
750,000	5.958675			
1,000,000	4.953201			
2,000,000	3.101132			
3,000,000	2.329274			
5,000,000	1.683733			
7,500,000	1.554593			
10,000,000	1.172541			
15,000,000	0.877705			
20,000,000	0.663136			

Minor upgrades

- Updated physicals constants
 - Consistent with SAMRML
 - SAMMY and SAMRML yield identical results now
- Corrected a misplaced index causing incorrect matrix multiplication for non-diagonal data covariance matrix
 - (uncovered and corrected by Vlad Sobes)
- Several other minor bug fixes
 - Revealed by compiler or platform idiosyncrasies

Conclusions and outlook

SAMMY is well positioned for

- further modernization
- new feature development
 - Including in the URR
- integration and code sharing with AMPX modules
 - e.g. SAMRML has been implemented in C++ by Andrew Holcomb

2016 R-Matrix Workshop

from June 27, 2016 to July 1, 2016 (US/Central) Santa Fe, NM, USA

Greetings R-matrix enthusiasts,

Main

Scientific Program

Registration

Registration Form

List of registrants

Important Dates

Accommodations

Travel

Support

We would like to invite you to participate in a JINA-CEE sponsored workshop on all things R-matrix that will be held June 27 to July 1, 2016, in Santa Fe, New Mexico, USA.

The workshop will host a number of discussion topics covering experimental, application, and theoretical developments of R-matrix. The aim of the workshop is to bring together a diverse group with representatives from experiment and theory who utilize the R-matrix formalism for a variety of purposes. Sessions will be divided into different specialty topics ranging from nuclear astrophysics applications to mathematical theory to data evaluations. A major goal of the workshop will also be to compare different implementations of the theory in analysis codes and discuss different uncertainty analysis methods. While the workshop is largely targeted at specialists in the field, researchers from astrophysics or other applications that use nuclear physics inputs, as well as students and post-docs, are also highly encouraged to attend.

Organizing committee:

(Richard) James deBoer (co-chair, UND) Mark Paris (co-chair, LANL) Goran Arbanas (ORNL) Carl Brune (OU) Gerry Hale (LANL) Ian Thompson (LLNL) Ethan Uberseder (TAMU) Morgan White (LANL)

We acknowledge support from Los Alamos and Oak Ridge National Laboratories, JINA-CEE, the University of Notre Dame, and the Institute of Nuclear and Particle Physics at Ohio University.

https://indico.fnal.gov/conferenceDisplay.py?confld=10228

Search

Auxiliary slides

SAMINT Release Through RSICC

- SAMINT will now be distributed with the SAMMY code from RSICC! <u>https://rsicc.ornl.gov/</u>
- Optional, compile-time inclusion
- All linear algebra using LAPACK/BLAS
- Mac, Linux, Windows
- Version control

Case Name	SAMINT Capability	Sensitivity Code	Notes
tr181	 Resonance Parameter updating Eta updating with correlations Eta updating without correlations Integral experiment covariance matrix 	CE TSUNAMI-3D	Independently confirmed by MATLAB calculations
tr182	- ⁵⁶ Fe case - Fitting resonance parameters with inelastic channel open	MCNP6	Compilation comes form appearance of zero cross- sections due to threshold reactions
tr183	 ²³⁹Pu case Fitting resonance parameter and nu-bar simultaneously Independent eta updating 	MCNP6	

Cross Section Changes: Finer Scale than Differential Experimental Data

Inelastic cross section of ⁵⁶Fe before (χ^2 = 23.6023) and after (χ^2 = 22.9036) the adjustment based on integral experimental data plotted on top of differential experimental data of Perey, presented with one standard deviation error bars.

Using SAMINT with SAMMY

Differential Experimental Data

