Latest Benchmark Contributions to the 2015 Edition of the ICSBEP Handbook

> Nuclear Data Week 2015 BNL, NY November 2-6, 2015

Presented by Andrew Hummel (INL)

on behalf of John Bess (INL) and Jim Gulliford (OECD NEA)

Idaho National Laboratory

Acknowledgments

- The authors would like to express their gratitude to all the individuals and countries that have participated in development of the ICSBEP Handbook; especially,
 - Chris White for her years providing high-quality technical drawings
 - Lori Scott for collating and preparing the ever-growing handbook
 - Ian Hill for database development and reviewing everything with a fine-tooth comb

This paper was prepared at Idaho National Laboratory for the U.S. Department of Energy under Contract Number (DE-AC07-05ID14517)

International Handbook of Evaluated Criticality Safety Benchmark Experiments

September 2015 Edition

- 20 Contributing Countries
- ~69,000 Pages
- 567 Evaluations
 - 4,874 Critical, Near-Critical, or Subcritical Configurations
 - 31 Criticality Alarm Placement/Shielding Configurations
 - 207 Configurations with Fundamental Physics Measurements
 - 829 Unacceptable Experiment Configurations

http://icsbep.inl.gov/

https://www.oecd-nea.org/science/wpncs/icsbep/

Revisions to Existing Evaluations

Identifier	Title(s)	Revision Notes
HEU-SOL-THERM-020	Unreflected Cylinders of Uranyl- Fluoride Solutions in Heavy Water	Revised Diameter of Level Indicator Pipe
LEU-COMP-THERM-039	Incomplete Arrays of Water- Reflected 4.738-wt.%-Enriched Uranium Dioxide Fuel-Rod Arrays	Corrected a Figure and Updated APOLLO-MORET Calculations
HEU-MET-FAST-099	Fast Neutron Spectrum Potassium Worth Space Power Reactor Design Validation	Adopted from IRPhEP
HEU-COMP-FAST-004	Critical Configurations for Beryllium-Reflected Assemblies of $U(93.15)O_2$ Fuel Rods (1.506-cm Pitch and 7-Tube Clusters)	Included Two New Critical Configurations for the Evaluation of Potassium Worth
IEU-MET-FAST-020	The FR0 Series 1: Copper- Reflected "Cylinderical" Uranium (20 % ²³⁵ U) Metal	Updated with Newly Released Data
IEU-MET-FAST-022	The FR0 Experiments with Diluted 20%-Enriched "Cylindrical" Uranium Metal Reflected by Copper	Updated with Newly Released Data
IEU-COMP-THERM-015	Single Cores of 30.14% 235U Enriched UO2/Wax Mixtures – Bare and with Single Reflector Materials	Updated Input Decks

HEU-SOL-THERM-020 Uranyl-Fluoride Solutions in Heavy Water

 Fixed diameter of level indicator tube in models and input decks

Code (Cross Section Set)→ Case Number↓	MCNP6.1 (Continuous-Energy ENDF/B-V)	$\frac{C-E}{E}\%$	MCNP6.1 (Continuous-Energy ENDF/B-VII.1)	$\frac{C-E}{E}\%$
1	1.00249 ± 0.00011	0.59 ± 1.17	0.99123 ± 0.00011	-0.54 ± 1.16
2	1.00455 ± 0.00011	0.90 ± 0.94	0.99593 ± 0.00011	0.03 ± 0.93
3	1.00997 ± 0.00012	1.43 ± 0.80	1.00518 ± 0.00011	0.95 ± 0.80
4	1.00945 ± 0.00011	1.40 ± 0.79	1.00471 ± 0.00011	0.93 ± 0.79
5	1.01433 ± 0.00011	1.85 ± 0.79	1.01467 ± 0.00011	1.88 ± 0.79

5

HEU-MET-FAST-099 Potassium Fast-Spectrum Validation

C/E-1 ~ -70%

Analysis	Neutron Cross	Calo	cula	lated Benchmark Experiment		<u>C</u> —	$\frac{C-E}{M}$ %			
Code	Section Library	ρ(¢)	±	σ	ρ (¢)	±	σ	E		0
	ENDF/B-VII.1	3.8	±	0.4				-67	±	5
MCNP6	ENDF/B-VII.0	3.1	\pm	0.4	11.4		1.0	-73	±	5
	JEFF-3.1	2.3	±	0.4	11.4	±	1.2	-80	±	4
	JENDL-3.3	2.4	±	0.4				-79	±	4

HEU-COMP-FAST-004 Additional Configurations of HEU with Potassium

					Calculated							
Model	Be	enchr	nark	MCNP5 ENDF/B-VII.0 ^(a)			$\underline{C-E}^{(b)}$	MCNP5 ENDF/B-VII.1 ^(a)			$\underline{C-E}^{(b)}$	
	k _{eff}	±	σ	k _{eff}	±	σ	E	\mathbf{k}_{eff}	±	σ	Ε	
Case 1	0.9989	±	0.0008	0.99289	±	0.00006	-0.60%	0.99742	±	0.00001	-0.15%	
Case 2	0.9998	±	0.0008	0.99463	±	0.00006	-0.52%	0.99930	±	0.00001	-0.05%	
Case 3	1.0001	\±	0.0008	0.98909	±	0.00001	-1.10%	0.99349	\±	0.00001	-0.66%	
Case 4	1.0015	J_{\pm}	0.0009	0.98884	±	0.00001	-1.26%	0.99352	$/\pm$	0.00001	-0.79%	

(a) Results obtained using either 100,000 histories for 2150 cycles or 1,100,000 histories and 3150 cycles, skipping the first 150 cycles.

(b) 'E' is the expected or benchmark value. 'C' is the calculated value.

Calculated worth doesn't match – measured worth of potassium

LEU-COMP-THERM-067 IPEN/MB-01 Reactor with Mo Rods

- Critical Loading Configurations of the IPEN/MB-01 Reactor with Fuel and Molybdenum Rods
- IPEN Brazil
 Adimir dos Santos
- 4 Configurations
 - 20, 24, 28, 30 Mo Rods

LEU-COMP-THERM-067 IPEN/MB-01 Reactor with Mo Rods

MCNP5 (Continuous Energy	Benchmark Value	(C-E)/E %
ENDF/B-VII.0)	Ren 2 0	
1.00086 ± 0.00004	1.0005 ± 0.0005	0.036 ± 0.048
1.00068 ± 0.00004	1.0004 ± 0.0005	0.028 ± 0.048
1.00082 ± 0.00004	1.0004 ± 0.0005	0.042 ± 0.048
1.00094 ± 0.00004	1.0005 ± 0.0005	0.044 ± 0.048
	MCNP5 (Continuous Energy ENDF/B-VII.0) 1.00086 ± 0.00004 1.00082 ± 0.00004 1.00094 ± 0.00004	$\begin{tabular}{ c c c c } \hline MCNP5 & Benchmark Value \\ \hline (Continuous Energy ENDF/B-VII.0) & $k_{eff} \pm \sigma$ \\ \hline 1.00086 \pm 0.00004 & 1.0005 \pm 0.0005 \\ \hline 1.00068 \pm 0.00004 & 1.0004 \pm 0.0005 \\ \hline 1.00082 \pm 0.00004 & 1.0004 \pm 0.0005 \\ \hline 1.00094 \pm 0.00004 & 1.0005 \pm 0.0005 \\ \hline \end{tabular}$

Adds to the comprehensive database of IPEN/MB-01 benchmark evaluations

Drawing not to scale Dimensions in cm

LEU-COMP-THERM-096 7uPCX Lattice Experiments

- Partially-Reflected Water-Moderated Square-Pitched U(6.90)O₂ Fuel Rod Lattices with 0.67 Fuel to Water Volume Ratio (0.800 cm Pitch)
- SNL USA
 - Gary Harms
- 19 Configurations
 - Varying holes and gaps

LEU-COMP-THERM-096 7uPCX Lattice Experiments

LEU-COMP-THERM-096 7uPCX Lattice Experiments

KENO-V.a ENDF/B-VII.0 CE

ALARM-TRAN-AIR-SHIELD-001 Neutron Activation and TLD Response to SILENE

- Neutron Activation and Thermoluminescent
 Detector Responses to a Bare Pulse of the CEA
 Valduc
- Valduc
 - Thomas Miller, et. al
 - ORNL, USA
 - Plus CEA, France
- 1 Configuration
 - 2 Collimator Boxes
 - Free Field Position
 - 4 Scattering Box Locations

ALARM-TRAN-AIR-SHIELD-001 Neutron Activation and TLD Response to SILENE

ALARM-TRAN-AIR-SHIELD-001

Position	TLD Type	Dose (Gy)	Monte Carlo Relative Uncertainty	C/E	C/E Relative Uncertainty
Case 1 Collimator A	Al_2O_3	4.811E+00	0.0047	0.7279	0.0786
Case 2 Collimator B	Al_2O_3	6.732E-01	0.0066	0.8209	0.0982
Case 3 Free Field	Al_2O_3	4.172E+00	0.0034	1.1215	0.0788
Case 4 Scattering Box 1	Al_2O_3	4.292E-01	0.0090	0.7400	0.0851
Case 5 Scattering Box 2	Al_2O_3	3.018E-01	0.0078	0.6859	0.0821
Case 6 Scattering Box 3	Al_2O_3	1.194E+00	0.0063	0.6785	0.0784
Case 7 Scattering Box 4	Al ₂ O ₃	1.281E+00	0.0042	0.6848	0.0908

			Monte Carlo	[
Position	Reaction	Activity	Relative	C/E	C/E Relative
1 control		(Bq/g)	Uncertainty	0.2	Uncertainty
	50 c >50 c		oncertainty		
	³⁵ Co(n,γ) ⁶⁰ Co	7.498E+01	0.0016	1.1343	0.0663
	ln(n,γ) ^{···} ln	9.932E+06	0.0019	1.0902	0.0706
	$\ln(n,n'\gamma)$	7.68/E+03	0.0023	0.9573	0.0630
Case I	⁵ Fe(n,p) ⁵ Mn	2.095E-01	0.0020	1.0158	0.0640
Collimator A	⁵⁵ Mn(n,γ) ⁵⁶ Mn	2.411E+03	0.0022	1.0435	0.0641
	²⁴ Mg(n,p) ²⁴ Na	6.717E+01	0.0046	1.0993	0.0641
	⁵⁸ Ni(n,p) ⁵⁸ Co	1.376E+01	0.0019	0.9581	0.0628
	⁵⁹ Co(n,γ) ⁶⁰ Co	2.848E+01	0.0013	1.2701	0.0819
	¹⁹⁷ Au(n, γ) ¹⁹⁸ Au	3.008E+04	0.0019	1.2400	0.0836
	¹¹³ In(n,γ) ¹¹⁶ In	3.642E+06	0.0015	1.2141	0.0847
Case 2	115 In(n,n' γ) 115m In	1.308E+03	0.0020	1.0936	0.1139
Collimator B	²⁴ Fe(n,p) ²⁴ Mn	3.515E-02	0.0021	1.1304	0.1214
Commator D	⁵⁶ Fe(n,p) ⁵⁶ Mn + ⁵⁵ Mn(n,γ) ⁵⁶ Mn	9.160E+02	0.0017	1.1759	0.0779
	²⁴ Mg(n,p) ²⁴ Na	1.196E+01	0.0061	1.1957	0.1338
	58Ni(n,p)58Co	2.330E+00	0.0020	1.0991	0.1170
	⁵⁹ Co(n,y) ⁶⁰ Co	7.782E+01	0.0022	1.1755	0.0660
	¹⁹⁷ Au(n, y) ¹⁹⁸ Au	7.858E+04	0.0037	1.1307	0.0642
	¹¹⁵ In(n, γ) ¹¹⁶ In	9.442E+06	0.0029	1.0754	0.0706
C 2	¹¹⁵ In(n,n'y) ^{115m} In	6.609E+03	0.0020	0.9635	0.0628
Case 5	⁵⁴ Fe(n,p) ⁵⁴ Mn	1.949E-01	0.0016	0.9941	0.0642
riee rield	⁵⁶ Fe(n,p) ⁵⁶ Mn + ⁵⁵ Mn(n,γ) ⁵⁶ Mn	2.662E+03	0.0029	1.1080	0.0630
	²⁴ Mg(n,p) ²⁴ Na	6.549E+01	0.0043	1.1081	0.0644
	58Ni(n,p)58Co	1.271E+01	0.0016	0.9786	0.0628
	⁵⁹ Co(n,y) ⁶⁰ Co	2.947E+01	0.0014	1.3233	0.0770
	¹⁹⁷ Au(n,y) ¹⁹⁸ Au	2.939E+04	0.0017	1.2174	0.0810
	¹¹³ In(n, y) ¹¹⁶ In	3.357E+06	0.0014	1.2386	0.0761
Case 4	$^{115}In(n,n'\gamma)^{115m}In$	5.321E+02	0.0040	1.0135	0.1015
Scattering Box 1	⁵⁴ Fe(n,p) ⁵⁴ Mn	1.155E-02	0.0034	1.0919	0.1214
	⁵⁶ Fe(n,p) ⁵⁶ Mn + ⁵⁵ Mn(n,γ) ⁵⁶ Mn	1.033E+03	0.0018	1.2183	0.0670
	58Ni(n,p)58Co	7.888E-01	0.0033	1.1173	0.1147
	³⁹ Co(n,v) ⁶⁰ Co	3.396E+01	0.0010	1.3269	0.0711
Case 5	¹⁹⁷ Au(n.y) ¹⁹⁸ Au	3.261E+04	0.0015	1.2845	0.0691
Scattering Box 2	58Ni(n,p)58Co	4.244E-01	0.0049	1.4636	0.1232
	³⁹ Co(n,y) ⁶⁰ Co	5.373E+01	0.0010	1.2201	0.0694
Case 6	¹⁹⁷ Au(n.y) ¹⁹⁸ Au	5.310E+04	0.0014	1.1906	0.0679
Scattering Box 3	58Ni(n,p)58Co	3.277E+00	0.0024	1.0115	0.0659
	³⁹ Co(n, y) ⁶⁰ Co	4.881E+01	0.0010	1.2224	0.0700
Case 7	¹⁹⁷ Au(n,v) ¹⁹⁸ Au	4.790E+04	0.0014	1.2376	0.0684
Scattering Box 4	58Ni(n.p)58Co	3.451E+00	0.0031	1.0362	0.0658

IEU-SOL-THERM-005 U(37 %)O₂F₂ Sphere

 Critical Spherical Dimensions of Aqueous Solution of U(37%)O₂F₂

ORCEF – USA

- Tanja Kaiba
 - IJS, Slovenia
- 1 Configuration
 - 69.2-cm-diameter sphere

IEU-SOL-THERM-005 U(37 %)O₂F₂ Sphere

Benchmark model k _{eff}	Uncertainty
1.0041	0.0065

	-		5 - 22 F	
	k _{eff}	$\pm \sigma_{MCNP}$	Calculation Bias (Δk_{eff})	Relative deviation (C-E)/E ^(a)
MCNP 6 1.0	0.99940	± 0.00006	-0.00470	-0.5 %
COG 11.1 ^(b)	0.99943	± 0.00013	-0.00467	-0.5 %
KENO V.a ^(c)	0.99934	± 0.00008	-0.00476	-0.5 %

(a) 'C' is the calculate value. 'E' is the expected or benchmark value.

(b) Acknowledgement to Dr. Soon Sam Kim, Lawrence Livermore National Laboratory.

(c) Acknowledgement to Dr. Soon Sam Kim, Lawrence Livermore National Laboratory.

HEU-MET-FAST-074 Oralloy Bare Metal Annuli

- Oralloy (93.2 ²³⁵U) Bare Metal Annuli
- ORCEF USA
 - Andrew Hummel
 - INL
- 4 Configurations
 - -7"-11"
 - -7"-13"
 - 11"-13"
 - 13"-15"

HEU-MET-FAST-074 Oralloy Bare Metal Annuli

	1.0.0
Inner Annulus	Outer Annulus
Innor Annulus	Dutor Annulus
2:0310 2:03 0:028619-1 2:03 0:028619-1 2:03920 2:04000 2:049200 2:049200 2:049200 2:049200 2:049200 2:049200 2:049200 2:04920000000000000000000000000000000000	32 920040 2 062540 1 7767 1 432440 2 06110 2 050310 2 0505 2
2.53095 22.53095 17.76530 27.76530 27.76500 27.76500 27.76500 17.75500 17.755000 17.755000 17.755000 17.755000 17.755000 17.755000 17.7550000 17.7550000 17.7550000 17.7550000000000000000000000000000000000	2,632400.4 27,933650 22,66350 22,66350 27483 3,810000 27,931872 27,931
	Immor Annulus ↓ 17,700002 0,319728 ↓ 27,723914 ↓ 27,723914 ↓ 27,723914 ↓ 27,723914 ↓ 27,723914 ↓ 28,85110 ↓ 29,85110 ↓ 29,85000 ↓ 29,85000 ↓ 27,723014 ↓ 29,85000 ↓ 29,85000 ↓ 29,9500 ↓

Case	Calculated			Benchma	rk Ex	$\frac{C-E}{M}$ %			
	k _{eff}	±	σ	k _{eff}	±	σ	E		
1	0.99640	±	0.00002	0.9988	±	0.0005	-0.24	±	0.05
2	0.99629	±	0.00002	0.9979	±	0.0005	-0.16	±	0.05
3	0.99471	±	0.00002	0.9970	±	0.0005	-0.23	±	0.05
4	0.99593	±	0.00002	0.9975	±	0.0005	-0.16	±	0.05

HEU-MET-FAST-077 Oralloy Annuli with Graphite Cores

- Experiments with HEU (93.14 wt.%) Metal Annuli with Internal Graphite Cylinder
- ORCEF USA
 - Xiaobo Liu
 - INPC/CAEP, China (visiting INL)
- 3 Configurations
 - -7"-13"
 - -7"-15"

Experiment 3

HEU-MET-FAST-077 Oralloy Annuli with Graphite Cores

Analysis	Neutron Cross	Cal	cula	ated Benchmark Experiment				$\frac{C-E}{0}$		
Code	Section Library	rary k _{eff} ±		σ	\mathbf{k}_{eff}	±	σ]	E	
	ENDF/B-VII.1	0.99886	±	0.00004		-		-0.12	±	0.06
MCNP6-1.0	ENDF/B-VII.0	0.99893	±	0.00004	1 0001	±	0.0006	-0.12	±	0.06
	JEFF-3.1 ^(a)	0.99568	±	0.00004	1.0001	_	0.0000	-0.44	±	0.06
	JENDL-3.3 ^(a)	1.00218	±	0.00004				0.21	±	0.06

(a) Results provided by John D. Bess from Idaho National Laboratory.

HEU-MET-FAST-083 (next handbook publication) Oralloy Complex Bare Metal Annuli

- Complex Geometry Bare Oralloy (93.2 ²³⁵U) Metal Annuli Experiments
- ORCEF USA
 - Quinton Beaulieu
 - INL/ISU
- 3 Configurations
 - 11"-15" Annulus
 - 7" Cylinder
 - 5" x 5" Box
 - Split 5" x 5" Box

When is the Next ICSBEP Meeting?

- To be held in conjunction with the IRPhEP Meeting
- April 18-22, 2016
- Independent Reviews need completed by end of February 2016
- Let me know if you plan on participating
 - Evaluations
 - Review
 - Meeting Attendance

Plans for the Future ICSBEP Handbook Publications

Subject	Evaluator(s)	Facility-Country
TRX Critical Experiments	Mike Zerkle	BAPL-USA
7uPCX Experiments with Titanium	Gary Harms	SNL-USA
SILENE Pb and Poly Experiments	Thomas Miller, et. al	ORNL-USA and CEA-France
Spherical UF ₆ Gas Core Reactor	Margaret Marshall	INL-USA
Westinghouse UO2 Lattice Experiments	Brittney Saenz	INL(intern)-USA
SNAP-10 Water Immersion Criticals	James Totten	INL(intern)-USA
Tungsten-Reflected Plutonium Sphere Subcritical Noise Measurements	Jesson Hutchinson, et. al	LANL-USA
Reevaluation of HEU FLATTOP	Jesson Hutchinson, et. al	LANL-USA
TRACY Supercritical Configuration	Kotaro Tonoike & Yuichi Yamane	JAEA-Japan
SNOOPY 134	Dave Heinrichs	LLNL-USA
GODIVA IV (Revision)	Joetta Goda	LANL-USA
TREAT Minimum Mass Critical Core	John Bess	INL-USA
AGN Reactor	Bob Busch	UNM-USA

Conclusion

- 13 new, revised, or draft benchmarks added into the ICSBEP Handbook (September 2015 Edition)
- 1 new evaluation missed handbook publication and will be available next year
- Validation of computational methods and improvement of integral neutron data
- Look forward to evaluation and inclusion of many more reactor physics benchmarks
- April 18-22, 2016 for the next ICSBEP/IRPhEP Technical Review Meetings in Paris

aho National Laboratory

Questions?

