Update on Nuclear Data Research at RPI Report to CSEWG

Y. Danon, E. Liu, E. Blain, A. Daskalakis, B. McDermott, K. Ramic, C. Wendorff *Rensselaer Polytechnic Institute, Troy, NY, 12180*

and

D. Barry, R. Block, J. Burke, T. Donovan, B. Epping, G. Leinweber, M. Rapp *KAPL, Bechtel Marine Propulsion Corporation, Schenectady, NY*,12301-1072

CSEWG meeting, November 3, 2015 at BNL

Measurements Completed/in Progress

Italics= in progress

Transmission

- H_2O 0.5-20 MeV, 250m flight path
- W 0.5-20 MeV, 250m flight path
- Pb 0.5-20 MeV, 250m flight path
- Capture
 - ⁵⁶Fe 500 eV 500 keV, 45m flight path
- Scattering
 - Pb 0.5 20 MeV
 - Hf Resonance Scattering
 - Zr <0.5 MeV in development
- Thermal Scattering
 - Quartz at temperatures of 20, 300, 550, 600 °C.
 - Polyethylene at temperatures of 295 K and 5 K.

Planned Measurements

- Scattering
 - Zr for E<0.5 MeV, continue development

Transmission

- ^{95,96}Mo,⁵⁴Fe - to complement capture above 180 keV

Photoneutron

- Be, Ta – measurements with 20-60 MeV bremsstrahlung

Capture

- ⁵⁶Fe continue measurement
- ^{95,96}Mo,⁵⁴Fe, 45m station 1 keV to 500 keV.
 - If unavailable, one of the following ^{92/94}Mo, ^{nat}Hf

Data Analysis

Measure	Sample	Status	
High Energy	Fe, Ti, Ta, Cu, Zr, ^{92/94,95,96,98,100,nat} Mo	High energy (0.5-20MeV) transmission, publication in preparation	
RRR and URR	Cs, Rh , Re, Fe, Ta ^{161,162,163,164} Dy ²³⁶ U ^{155,156,157,158,160} Gd ^{153,nat} Eu ^{92/94,95,96,98,100,nat} Mo	Resonance analysis in progress Resonance analysis in progress, ¹⁶⁴ Dy - publication in internal review ²³⁶ U - publication submitted to progress in nuclear energy Gd isotopes – published, NSE Vol. 180, Number 1, May 2015. Eu – published , Annals of Nuclear Energy, Vol. 69, pp. 74-89, 2014. ⁹⁵ Mo URR – Published in Phys. Rev. C	
Scattering	²³⁸ U Fe Pb	 ²³⁸U – published, Annals of Nuclear Energy, Vol. 73, pp. 455-464, 2014. Fe – analysis near completion Pb – analysis in progress 	
Thermal Scattering	H ₂ O, polyethylene, quartz	Analysis in progress	

High Energy Transmission Experimental Setup

Total cross section of ^{nat}**W**

- Used 250m flight station with 2 modules of EJ-301 detector
- Measured two sample thicknesses: 4.5 and 5.5 cm
- ENDF/B-7.1 is in good agreement above 8 MeV
- The RPI data agree well with the Abfalterer et al. 2001 experimental data

ensselaer

• Below 8 MeV the evaluations need improvement.

Energy [MeV]

Total Cross Section of ^{nat}**Pb**

- Was measured to supplement a Pb Scattering measurement
 - No anomalies were observed in the sample material
- Measured two sample thicknesses: 9 and 12 cm
- The data are in good agreement with ENDF/B-7.1
- Resonance structure is evident below 5 MeV

Update on Oxygen total cross section

H₂O Samples

- Used a spectroscopic quartz cell to contain research grade water
 - Outgas the water by drawing vacuum for ~1 minute.
 - Mounted the cells in a polyethylene holder
 - Made sure there was no air bubble in the cell
 - Monitored the sample using a camera to make sure air bubbles were not formed
 - Monitored the room temperature to characterized the variations ($\pm 1.5^{\circ}$ C)
- Used two cell thicknesses: 2 cm and 5 cm, about 5 cm diameter.
- Measured an empty cell as an open beam

ensselaer

• 13 cm thick graphite sample was used for verification and energy calibration

H₂O transmission measurement

- Measurements of 2 cm and 5 cm thick H_2O in thin walled quartz optical cells.
- Used 250 m TOF and 10 ns pulse width.
- Used 3 fission chambers as beam monitors.
 - The experiment requires "good" monitor normalization
- In the ¹⁶O cross section minima at 2.34 MeV mostly H₂ was measured
 - Provides verification of the normalization
- Used carbon for energy calibration

Comparing Normalization with Other Data Sets

Energy range	C/E _{RPI}	C/E _{RPI}
<u>3.2 MeV < E < 6 MeV</u>		Statistics
ENDF/B-VII.1	0.988	± 0.002
Leal 1	1.030	± 0.002
Leal 2	1.006	± 0.002
Hale	1.012	± 0.002
Cierjacks 80	0.968	± 0.002
Cierjacks 68	1.009	± 0.002
Johnson 74	0.996	± 0.002

Normalization uncertainty:

$$\frac{\sigma_{\exp}^{H}}{\sigma_{ENDF}^{H}} = 0.996 \pm 0.003^{*}$$
*Statistical

Other ¹⁶O observations

- RPI energy resolution is better than Cierjacks 68
- There is some disagreement at the peak of the 1 MeV resonance
- Carbon transmission measured at the same experiment shows good agreement with the evaluation

RPI and Johnson 74

- Overall good agreement
 - Good agreement in the 1 MeV resonance.
 - ENDF is based on the Johnson data
- The Johnson 74 data has slightly better energy resolution.
- There is a slight energy shift between the two experiments

Fast Neutron Scattering

Quasi-differential neutron scattering and angular distributions.

Angle Set 1 (45, 70, 100, 150 degrees)

- Use 8 liquid scintillators, 2 are always at the same angle
- Total of 7 different angles (one pair of detectors is stationary)

Pb Scattering at 30 deg

Experiment and evaluation are in good agreement for both C and Pb •

C/E values as a function of **ToF**

ensselaer

- Relatively good
 agreement between
 experiment and
 evaluations
 - Discrepancies at low and high energy

Pb results at 150 deg

- Carbon measurements agree with simulation
- For Pb, ENDF underpredicts the experiment

he Gaerttner LINAC Center

C/E values as a function of ToF

- Poor agreement between experiments and evaluations
 - Can see resonances not fitting well
 - ENDF 7.1 is underestimating the data
 - JENDL 4.0 and JEFF 3.2 are overestimating the data

Resonance in Pb-208 at 817 keV

Counts

- Some resonances show disagreement at different angles
 - Could be related to spin or angular momentum assignment.

he Gaerttner LINAC Center

Resonance at 817 keV C/E values

JENDL 4.0 shows the best agreement with our experiment Forward angle measurements have the best agreement in this energy region

Mid-Energy Capture Detector System Overview

- 4 C₆D₆ detector modules manufactured by Eljen Technology
- Low mass, low neutron sensitivity design
- Located at 45m flight path in newly constructed flight station
- Measurements made from 1 eV to 1 MeV

Mid-Energy Capture Detector System Overview

Sample Changer

- Velmex BiSlide linear translation table w/ stepper motor and magnetic position encoder
- Data Acquisition
 - 8-channel SIS3305 digitizer w/ 10-bit,
 1.25GHz functionality
- Beam Flux Monitoring
 - 8-Channel MDGG-8 Flexible Delay/Gate
 Generator & Scaler
 - Use fission chambers as monitors
- Detector Bias
 - 2 Dual-channel 3kV NHQ-203M high voltage supplies
- Software
 - Custom C/C++ libraries for system control, data acquisition, visualization and data analysis

Mid-Energy Capture Detector Principle of Operation

Uses the "Total Energy" detection principle:

- 1. Detect only a **single photon per capture** cascade
- 2. Assert that the detection **efficiency is proportional** to the incident photon energy
- 3. Given 1 and 2, it can be shown that the total efficiency to detect a capture event is proportional to the total excitation energy of the compound nucleus, and insensitive to the cascade.

Requires a weighting function

^{nat}Fe Capture measurment

- ^{nat}Fe was used as a test to compare with evaluations and other measurements
 - The RPI data (45m flight path) has good energy resolution compared to the Spencer ORELA data (40m flight path)
 - The RPI data provide information above 700 keV (next slide)

aerttner LINAC Center

^{nat}Fe Capture Cross Section above 847 keV

- New capture data obtained above 847 keV and 1409 keV inelastic states in ⁵⁶Fe and ⁵⁴Fe
- Capture signal separated from inelastic scattering signal by postprocessing digitized waveforms with different energy deposition cutoffs
- Good agreement with other experiments
- Above 1400 MeV, the data are lower than the evaluations

⁵⁶Fe Capture measurement

- ⁵⁶Fe sample was 7mm thick.
 - Data was collected up to 2 MeV
- The data is in good agreement with the Spencer Data (was used to generate ENDF/B-VII.1)
 - Although there are some differences
- The statistical accuracy is not sufficient yet.

⁵⁶Fe Capture Cross Section above 847 keV

- New capture data obtained above 847 keV and 1409 keV inelastic states in ⁵⁶Fe and ⁵⁴Fe
- Capture signal separated from inelastic scattering signal by postprocessing digitized waveforms with different energy deposition cutoffs
- Good agreement with other experiments
 - The data seems slightly higher that our ^{nat}Fe results
- Above 1400 MeV, the data are lower than the evaluations

Thermal Scattering

Thermal Scattering Overview

- Preformed measurements at SNS
 - SEQUOIA
 - Water
 - Medium Density Polyethylene (MDPE)
 - ARCS
 - High Density Polyethylene (HDPE) 295 °K and 5 °K
 - Quartz (SiO₂) at 20, 300 550, 600 °C
 - VISION (measures $S(\omega)$)
 - Lucite, Lexan, Polyethylene at 5 °K and 295 °K
- The double differential scattering data (DDSD) can be used to benchmark thermal scattering evaluations
- Method to generate $S(\alpha,\beta)$ from the experimental data are under development:
 - 1. Convert the data $(S(Q,\omega))$ to phonon spectrum (use low values of Q to limit multiple phonon scattering)
 - 2. Remove the elastic peak from the DDSD and convert the inelastic part directly to $S(\alpha,\beta)$
- Developed capabilities to use LAMMPS code to calculate the phonon spectrum and scattering kernel.

Phonon spectrum from measured S(Q,E)

- Low temperature measurements are essential in order to resolve the structure.
- Convert the measured S(Q,E) data for phonon spectrum using the SNS DAVE code:

$$S(Q,E) = \frac{\hbar^2 Q^2}{6ME} \exp(-\langle u^2 \rangle Q^2) G(E)[n(E,T)+1]$$

G(E) - generalized phonon density-of-states(GDOS),

Q - wave vector transfer,

S(Q,E) - structure dynamics factor,

M - mass of the atom,

 $\langle u^2 \rangle$ - mean square displacement.

$$n(E,T) = \frac{1}{\exp\left(\frac{E}{k_B T}\right) - 1}$$

Example for HDPE Experiment Normalized GDOS

- The phonon spectrum was processed with NJOY 2012
- The experimental response simulated with MCNP 6
- The agreement with the experiment is improved

Example for HDPE other angles Experiment Normalized GDOS

- Similar improvements
- Other incident energies and angels available

Polyethylene Total Cross Section

- The experimentally derived phonon spectrum is in good agreement with the total cross section measurement.
- The Experimental vs theory driven measurement give slightly different results

Summary

Recent publications

- Gd isotopes published, NSE Vol. 180, Number 1, May 2015.
- Eu published, Annals of Nuclear Energy, Vol. 69, pp. 74-89, July 2014.
- ²³⁸U published, Annals of Nuclear Energy, Vol. 73, pp. 455-464, November 2014.
- ⁹⁵Mo URR published, Phys. Rev. C 92, 024601, 2015.

Analysis in progress

- High energy (0.5-20 MeV) transmission: Fe, Ti, Ta, Cu, Zr and ^{92/94,95,96,98,100,nat}Mo
- RRR (capture/transmission) : ^{161,162,163,164}Dy, Cs, Rh, Re, Fe,
- URR capture: Ta
- ^{nat}Fe neutron scattering
- Thermal scattering H₂O, polyethylene, quartz

Measurements since the last CSEWG meeting

- Transmission: H_2O , Pb, W
- Scattering: Pb
- Capture: ⁵⁶Fe

Planned/in progress measurements

- Scattering: Zr
- Capture: ⁹⁵Mo

