New Directions on Nuclear Data Activity at LANSCE

Hye Young Lee P-27, LANL

Nov. 2nd - 6th 2015

CSEWG Measurement Session US National Nuclear Data Week 2015

Outline

1. ¹⁶O(n, α) measurement at LANSCE

- Status of ¹⁶O(n,α) cross section evaluation : experimentalist point of view
- **O LENZ (Low Energy NZ) capability**
- $O^{16}O(n,\alpha)$ measurement at LANSCE
- 2. Outlook on improving nuclear data quality on (n,p) and (n,α) reactions using LENZ
- **3. Total Cross Section Measurements**
- **4. Enhanced DANCE Capability**
- **5. Photon Strength Function Study on unstable nuclei**

Evaluation of ¹⁶O(n, α) reaction : differ by up to 30-50 %

NEMEA-7, 5-8 November 2013, Geel, Belgium

Status of ${}^{13}C(\alpha,n)$ data sets :low energy-I

O Discrepancy between Harissopulos, Bair and Hass, and Sakharan

Reported Uncertainty: 1)Harissopulos – 4% 2)Other two measurements – 20 %

¹³C target thickness :

1)the uncertainty in a stopping power could be ~10 % and an effective energy is convolution of target shape & cross section

2) target thickness was 5 keV at $E\alpha = 1MeV$ (BH) and 31 keV at $E\alpha=3MeV$ (Sekharan)

Los Alamos

Status of ${}^{13}C(\alpha,n)$ data sets :low energy-II

(1) Harissopulos' neutron detector efficiency was calibrated with a ²⁵²Cf source at En (mean) =2.3 MeV and the shape is simulated using MCNP.

2) Sakharan's neutron detector efficiency was calibrated with multiple energies from the ⁷Li(p,n) reaction and a Ra- α -Be source to extend up to E_n=5 MeV. Reported 12 % of uncertainty in efficiency estimation.

Status of ${}^{16}O(n,\alpha)$ data sets : high energy

- **1.** Alpha's self absorption in target
- 2. Ionization chamber efficiency, esp. potential angular bias
- 3. Neutron energy resolution

- IRMM 2012 (Institute for Reference Materials and Measurements, Belgium): an ionization chamber, a gas target, signal digitization for better background suppression
- IPPE 2009 (Institute for Physics and Power Engineering, Russia) : an ionization chamber

¹⁶O(n,α) cross section, angular distributions, kinematics, etc ¹⁶O(n,α) reaction cross section, predicted from LANL R-matrix analysis by G. Hale

Requirements for a new measurement

- A large number of target atoms and a spectrometer with high detection efficiency, due to low cross sections
- A large signal-to-background ratio and low detection threshold, due to low alpha energies to be detected
- A good energy resolution
- Improved systematic uncertainty in order to distinguish 30 % difference
- Angular distributions to be used in R-matrix studies

LENZ : upgrade of NZ chamber

- Designed for measuring (n,z) reactions with a large solid angle and low detection threshold for especially alphas
- Twin Frisch grid ionization chamber
- Multi-target wheel system

INICI ACCIFIED

- At forward angles, silicon strip detectors measures angles and charged particles as a telescope
- Digitizers provide wavelet information as post processing for improving signal-to-noise ratio and timing resolution with no dead time

LENZ configuration for ¹⁶O(n,α) reaction

Maximize the solid angle and minimize the low energy alpha's energy loss
 Minimize the detection thresholds in anodes and timing resolution in cathodes

⁵⁹Co(n,α) and ⁵⁹Co(n,p) reactions as inbeam commissioning at LANSCE

TOF (T0-cathode) vs. TOF (cathode-DSSD) shows groups in time correlations. Based on these gates, the yields normalized to the calculated neutron flux are shown below.

- Different particles were identified
- $\bigcirc \text{ Not yet optimized preamplifier for } \Delta E \text{ silicon detector to extract}$ the best timing resolution
- Beam induced background was measured
 - Analysis is in progress

Estimated energy resolution at LANSCE

IPPE and IRMM used D(d,n), 3H(p,n) reactions to generate neutrons
LANSCE provides a white neutron source

LINICI ACCIEIED

Solid ¹⁶O target for LANSCE measurements

- For better control of the target amount and ease of manufacturing in house, we plan to use a solid oxygen target
- Tantalum backing was anodized to produce Ta_2O_5 with ~ 4000 Å

For the ratio measurement, Li₂CO₃ targets were made

LLC for the U.S. Department of Energy's NNSA

Estimated LENZ ¹⁶O(n,α) yield and target uncertainty for the ratio measurement to ⁶Li(n,α)

Assuming 100 Hz macro pulses at WNR 15R with 15 m flight path, integrating over the detected solid angles,

estimated systematic uncertainty for O/Li ratio measurement

target thickness	5	%
stoichiometry	5	%
(neutron flux)	(10)	%
timing resolution	1	%
Li cross section	10	%
total sys unc	12.3	%
total stat. unc	0.7-2.5	%
total unc.	12.3-12.7	%

Experimental effort for level density study

- Traditionally, for most of stable nuclei, the level density is estimated on the basis of experimental information from low-lying discrete levels and neutron resonance spacing
- Evaporation spectra from (n,p) (n,α), (α,n) and (p,n) reactions and with beams like d, ³He, ^{6,7}Li, ¹²C up to 15 MeV of beam energy

10⁸ Voinov et al. 10 63Ni (2012, CNR*11) -evel density (1/MeV) 10⁶ 10⁵ solid line : neutron 10⁴ resonance spacing 10^{3} dots : proton evaporation 10² spectra 10^{1} histogram : 10⁰ discrete levels 10⁻¹ 8 101214161820 6 0 Excitation energy (MeV)

Level density parameters obtained from neutron resonance spacing measurements need to be validated by a different experimental approach such as (n,p) and (n, α) reactions for better predictive power in reaction cross sections, especially for unstable nuclei

For better understanding of HF nuclear inputs via studying ⁷⁷Se(n,p) reactions

⁷⁷Se(n,p)⁷⁷As 0.10 **OVarious Hauser-Feshbach** Paul+ (1953) calculations show different shapes on Vinitskava+ (1967) Casanova+ (1976) (n,p) cross section for ⁷⁷Se and ⁷⁶As, 0.08 Qaim+ (1977 Hoang+ (1989 questioning nuclear input JFFF-3.1 Cross Section (b) JENDL-3.3 parameters at this mass range 0.06 Present **OCurrently available data sets were** Kamada et al., Journal measured only near 14 MeV, so of Nuc. Sci. And 0.04 LENZ will measure (n,p) cross **Tech (2012)** sections at $E_n = 1-20$ MeV at 0.02 LANSCE 0.00 10 15 5 20 0

Incident Neutron Energy (MeV)

For improving data evaluation, we plan to provide better quality (n,α) cross section data on structure materials

3. Total cross section measurement capability at LANSCE - I

Expanding Dispersive Optical Model(DOM) predictive power :

- DOM connects reaction data (σ_{tot}(n), elastic scattering) to structure (rms radii, spectroscopic factors) via fitting a complex optical potential
- Data from along closed-shells provide a natural, chart-wide data scaffold for DOM fitting, improving extrapolation away from stability
- Wash. U. group has performed successful measurements on Ca isotopes and now are taking data with Sn isotopes (Sn-112 & Sn-124) in the 2015 Run cycle

3. Total cross section measurement capability at LANSCE - II High resolution study of ²⁰Ne(n,n)

Previous (n,n) measurement with 13 keV resolution and 10 keV uncertainty didn't observe weak resonances

High resolution study of ²⁰Ne(n,n) at neutron energies below 2 MeV

- 22 Ne(α ,n) 25 Mg is the main neutron source for the s process in massive stars, however most abundance 16 O acts as the strongest neutron absorber via 16 O(n, γ) 17 O, which could recover "lost" neutron flux by the subsequent 17 O(α ,n) 20 Ne reaction
- O However, the efficiency of this recovery strongly depends on the relative strength of the competing reaction channel ${}^{17}O(\alpha,\gamma)^{21}Ne$
- Current limitation is poorly known level information on ²¹Ne at Ex = 7.4 – 8.4, therefore improved total cross section measurement is needed

4. Enhanced DANCE Capability at LANSCE, led by M. Jandel (DOE-Early Career)

DANCE hardware upgrade, NEUANCE (Neutron Array at DANCE), provides new measurements on correlated data between neutrons and gammas in neutron-induced fissions with high efficiency

Fission fragment tagging with thin scintillator foils is composed of multiples films from a solution of liquid scintillator, for the studies of gamma-ray cascades leading to the isomeric states in U-236

5. Photon strength function studies on unstable nuclei in inverse kinematics at ANL

What can we obtain by combining HELIOS (Helical Spectrometer) & APOLLO (LANL developed γ-ray array)?

(d,p) reactions can deduce :

- Properties in excited states
- **@** Angular momentum transfers
- Single-particle strengths

Coincident \gamma detection can add:

- Level densities
- ④ γ-ray decay schemes & multiplicities
- Photon strength function

5. Planned experiments on ⁹⁷Zr photon strength function (PSF) led by S. Mosby

Measure ⁹⁶Zr(n,γ) at DANCE
(Dec. 2015) and ⁹⁶Zr(d,p)⁹⁷Zr
using Apollo at ANL (spring
2016) to constrain PSF,
verify consistency of direct,
indirect methods

 Many fission fragments could be studied using CARIBU, and potentially more at FRIB

Summary

- Feasibility to study the ¹⁶O(n,α) has been established at LANSCE and currently performing a proof-of-principle measurement in the run cycle 2015
- Many more exciting and new initiatives are being developed to contribute US Nuclear Data Program
- Close collaboration at LANL among experiment, theory, and evaluation :

R. Haight, A. Couture, M. Devlin, S. Mosby, F. Tovesson

J. Ullmann. J. Winkelbauer (P-27)

M. Jandel, T. Bredeweg, G. Rusev, B. Baramsai, C. Walker (C-NR)

T. Kawano, G. Hale, M. Paris, P. Talou (T-2)

M. White, M. Chadwick (XCP, ADX)

