LA-UR-15-28535

Nuclear Data Experiments at LANSCE: Brief Highlights 2015

Los Alamos

NATIONAL LABORATORY

Robert Haight for P-27 and colleagues Los Alamos National Laboratory

Cross Section Evaluation Working Group Meeting Brookhaven National Laboratory November 2-4, 2015

Nuclear data experiments use neutrons at the Lujan Center, Target 2 and Target 4

Nuclear data measurements at LANSCE are made with many different instruments

DANCE (n,y)

Chi-Nu – PFNS and (n,xn)

LENZ

TPC

SPIDER

Double gridded ion chamber (IRMM) Lead Slowing-Down Spectrometer

Note: GEANIE (n,xγ) is now disassembled

DANCE (n, y)

Contacts: John Ullmann Aaron Couture Marian Jandel

Major DANCE Experiments 2014/2015

- ^{236,238}U(n,γ) relative to ²³⁵U(n,f) mixed target Data > 10 keV (M. Jandel DOE ECR)
- $^{238}U(n,\gamma)$ showing importance of M1 strength
- $^{235}U(n,\gamma)$ capture to isomers (requires fission tagging)
- ²⁴²Pu spontaneous fission and (n,f) gamma-ray spectra (LLNL)
- 67,68 Zn(n, γ) astrophysics (with LSU)
- ¹³⁶Xe(n,γ) Double-Beta decay backgrounds and physics (with IU)
- 161,162 Dy(n, γ) Strength functions and resonances (with NCSU, Charles U.)
- $^{173,174}Lu(n,\gamma)$ radioactive samples! (CEA)
- 191 Ir(n, γ) and 193 Ir(n, γ) Capture data > 10 keV

²³⁸U capture shows importance of M1 strength

DANCE Measurement of ⁶³Ni(n,γ)

- 63 Ni radioactive $t_{1/2} = 101.2$ y
- The neutron capture cross section was measured up to several 100 keV
- The deduced MACS increased by a factor of 2 from prior predictions
- The new capture cross section results in a 30% reduction in the production of s-only ⁶³Cu in the weak s-process, the primary production site for ⁶³Cu

Data and Figures from Weigand et al., PRC, accepted

GEANIE (n,xγ)

Contacts: Ron Nelson Nik Fotiades Matt Devlin

GEANIE is now dismantled but data analysis continues

Measurements of (n,x) reactions feeding isomers

• ¹⁸⁷Re(n,xn) with Jeff Carroll (ARL) and David Matters (AFIT)

New γ-rays feeding the isomer in ¹⁸⁶Re, observed with GEANIE from the ¹⁸⁷Re(n,2n) reaction. From D. Matters, Master's Thesis, Air Force Institute of Technology (2015)

Excitation function of transition leading to isomer can be compared with calculations

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Other GEANIE measurements

- Population of isomer in ¹⁰⁹Ag(n,2n)¹⁰⁸Ag
- 136 Xe(n,xn) for $0\nu\beta\beta$ backgrounds with Josh Albert, Lisa Hoffman, et al. (IU)
- Neutron-induced γ-ray standard measurements: ⁵⁶Fe, Cr, B, Ti (n,n') γ-ray comparisons as a function of E_n

Fission Cross Sections Fission Product Angular Distributions Fission Total Kinetic Energy Fission Product Yields

Contact: Fredrik Tovesson

The NIFFTE TPC

- MICROMEGAS detector
- Segmented anode planes
 - 5952 hexagonal pads
- 3D particle tracking
- ~4π solid angle coverage
- Custom electronics
 - Sustained 60 MB/s

NIFFTE = *Neutron-Induced Fission Fragment Tracking Experiment*

Preliminary ²³⁵U Fission Fragment Anisotropy

- Thesis work of Verena Kleinrath
- Fit angular distributions bin-by-bin with even Legendre polynomials
- Statistical uncertainties shown
- ²³⁹Pu anisotropy analysis ongoing

SPIDER Instrument: <u>SP</u>ectrometer for Ion <u>DE</u>termination in fission <u>R</u>esearch

Chamber ` Micro-Channel Plate Delay Line Anode

- 2E2v instrument for high mass resolution fission product yields
- Particle energy measured with ionization chambers
 -200 nm SiN entrance window, isobutane fill gas

Bean

- Particle velocity measured with ToF assemblies

 Micro-channel plates for fast timing (75 mm diameter)
 C. W. Arnold *et al.*, Nucl. Instr. and Meth., **764**, 53 (2014)
 Delay line anode for particle trajectory corrections
- A scale-up beyond the dual-arm will notably enhance detection efficiency and experimental capabilities

Recent SPIDER Fission Product Yield Results

- •Experimental data from 2014 2015 $^{252}Cf(sf)$, $^{235}U(n_{th},f)$ and $^{239}Pu(n_{th},f)$
 - Comparison to England and Rider Evaluation LA-UR-94-3106, ENDF-349
 - -⁻²⁵²Cf results published in NIM: K. Meierbachtol *et al.*, Nucl. Instr. and Meth., **788**, 59 (2015)

TKE and mass distributions with an Frisch-gridded ionization chamber

- The FGIC has been optimized for fission measurements.
 - ~0.5% energy resolution
 - 4-5 AMU mass resolution (using 2E method)
- **Experiments**
- 2012 : ²³⁸U (TKE and mass) [D. Duke, Ph.D. Thesis, Nov. 2015]
- 2013 : ²³⁵U (TKE and mass) Publications in progress.
- 2014 : ²³⁹Pu (TKE) [Meierbachtol, K. et al., Publication in process.]

[S. Mosby et al., NIM A. 2014, 757, 75]

- TKE shape validates model.
- 235U Data exhibit the turnover behavior at low E_n = 0 - 3 MeV.
- Structure corresponding to multichance fission thresholds.

TKE experimental results are consistent with calculations by Lestone et al.

- Fission fragment mass distributions for 238U and 235U are available at for a wide range of Einc.
- Correlated mass and energy information is also available.

Chi-Nu - Prompt fission neutron spectra

Contacts: LANL: Bob Haight Hye Young Lee Shea Mosby Matt Devlin LLNL: Ching-Yen Wu

Approach – fast fission counter, two types of neutron detector arrays to cover fission neutron energy range

- WNR/LANSCE spallation neutron source – all neutron energies from 0.5 to 30 MeV and higher
- New building from LANS
 support
- Double time-of-flight
 - LANSCE spallation source to fission chamber → <u>incident</u> <u>neutron energy</u>
 - Fission chamber to neutron detector → fission neutron <u>energy</u>
- Multi-year project thru FY2017
- Goal: a significant result for stockpile stewardship (i.e. with respect to the current nuclear data evaluations)

LLNL fission chamber

Two LANL neutron detector arrays

Measuring fission neutron spectra by time of flight is straightforward in principle

- Detect fission
- Measure PFNS by time of flight to a detector
- We also measure incident neutron energy by TOF

Challenges are in:

- neutron scattering
 - fouls up path length
 - neutrons scatter to lower energy
- detector response (efficiency 5-30%)
- few neutrons at high energies
- n-gamma separation
- good timing (ns)

Goal for Chi-Nu is measurements that will impact evaluations – shape and uncertainties

⁶Li-glass neutron detectors give pulse-height versus time of flight from the fission counter to the detector

- Reaction: ⁶Li(n,alpha)³H
 Q-value = 4.8 MeV
- Efficiency good at low En
- Good separation of neutrons and gamma rays for low En

Then we need to subtract background and transform to "equivalent" fission energy

3 ways of analyzing data

- "Ratio of ratios" → correction factor → preliminary results
- Unfolding next step
- Forward analysis "best", calculationally intensive

First, preliminary results on low energy part of PFNS for ²³⁵U(n,f) can be compared with literature values

- MCNP calculations moved to High Performance Computers
- Results good down to 0.1 MeV (our goal) and probably even lower
- Error bars include both statistical and systematic errors
- General agreement with data taken at thermal energy

The preliminary results for ²³⁵U compare rather well with evaluations

Prompt Fission Neutron Spectra Measurements at LANSCE obtain data in previously unexplored region

- New region of PFNS for fission induced by fast neutrons (above thermal) for ²³⁵U(n,f).
- Measured PFNS ~ 50 keV to 1 MeV
- Preliminary analysis shows reasonable agreement with literature data obtained at thermal energy
- Next is full analysis of ²³⁵U and then ²³⁹Pu

Univ. Michigan is making correlation measurements of PFNs & PFGs: n-n, n-g, g-g

54 Liquid scintillators En > 0.5 MeV

Acknowledgments for funding support

- US DOE
 - NNSA including SSAP
 - Office of Science Nuclear Physics
 - Nuclear Energy University Programs
- LANL LDRD

Thank you!!!

