AC-LGAD READOUT USING ALTIROC 0V2B ASIC

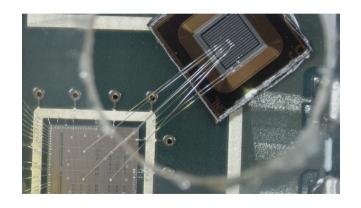
Gabriele D'Amen¹, Gabriele Giacomini², Enrico Rossi², Alessandro Tricoli¹

30 August 2021

¹Physics Department, Brookhaven National Lab, Upton (US)

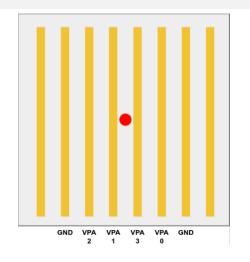
²Instrumentation Division, Brookhaven National Lab, Upton (US)

TABLE OF CONTENT


- I. Introduction
- II. Readout of IR Laser signals
- III. Readout of 90 Sr β signals
- IV. Comparison between β and IR laser
- V. Time resolution measurement
- VI. Spatial resolution measurement
- VII. Future plans & conclusions

DEVICE UNDER TEST

Linear strip BNL AC-LGAD 1x16


- Area: $2 \times 2 \text{ mm}^2$
- 16 strips, pitch 100 μ m, gap 44 μ m
- Wafer 2003
- $V_{bias} = -170 \text{ V}$
- 4 strips bonded to 4 input channels of ALTIROC 0V2B ASIC
- Digital channel DAC = 2020

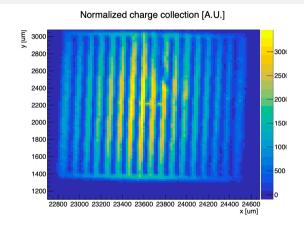
Betas from 90 Sr and IR Laser from TCT used to characterize ALTIROC response to AC-coupled signals

Device Under Test wirebonding

- Central neighbouring strips wire bonded to the four input channels on the ALTIROC ASIC
- Strips chosen to be far from the the device guard-ring in order to minimize border effects
- Lateral strips on their left and right are wire-bonded to the same ground as the ASIC to keep them to remain floating
- Guard-ring signal sharing should be minimized

¹Only central strips are shown

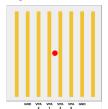
ALTIROC SETUP

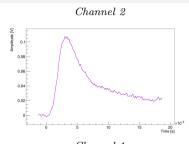

- ASIC ALTIROC 0V2B bonded to ALTIROC Testing PCB V2B (2018, ver. 1807)
- Software Version: 19072018
- Firmware Version: v4
- IR scans: conducted using Particulars Scanning-TCT apparatus mounting IR laser (1064 nm)
- ALTIROC PCB mounted on a 3-axis computer-controlled mechanical stage with position resolution of less than 1 μ m
- Beta tests: ⁹⁰Sr source used for beta tests

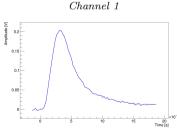
5/32

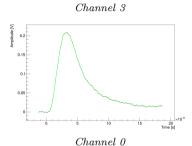
Signals from IR laser

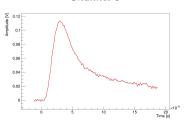
TCT CHARACTERIZATION

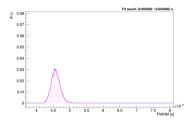

- Characterization of the signal sharing, time and space resolution using ALTIROC 0V2B
- ALTIROC setup adapted to TCT station; characterization performed by using an IR laser with 10 kHz frequency
- Colour indicates integral charge of the signal peak from the ALTIROC analog output

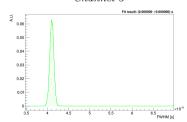



 $^{^2}$ "Wave" effect is due to mechanical vibration in the board support. Will be addressed with a new support in the near future

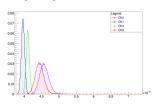

Waveforms TCT - IR Laser


- Signals from IR laser interacting at the center of the sensor (between strip 1 and 3, as shown by red dot)
- Analog output of the ALTIROC shaper
- Signals from channel 3 and 1 (closest to laser focus) have higher amplitude

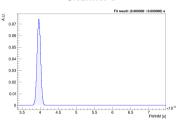




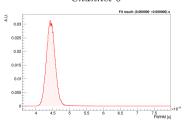
FWHM DISTRIBUTIONS - IR LASER

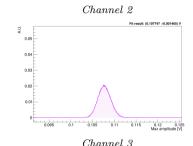


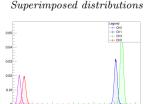
Channel 3

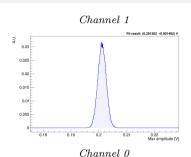


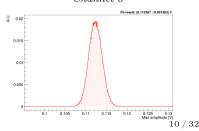
- FWHM of signals acquired from **analog output** of the ALTIROC shaper for all 4 channels
- Fast (~5 ns) signal compatible with published results for (DC-)LGAD sensors read-out via ALTIROCO

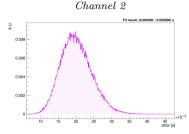

$Superimposed\ distributions$

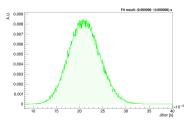

Channel 1


Channel 0

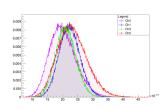


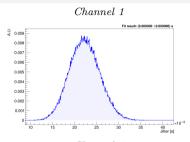

MAXIMUM DISTRIBUTIONS - IR LASER


- Amplitude of signals acquired from analog output of the ALTIROC shaper for all 4 channels
- Amplitudes of channels 1 and 3 slightly different due to difficulty to focus laser on precise center between two strips caused by setup oscillations (details later)

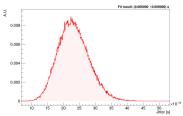


JITTER DISTRIBUTIONS - IR LASER

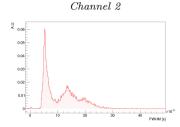

Channel 3

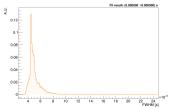


- Jitter of signals acquired from analog output of the ALTIROC shaper for all 4 channels
- Jitter distributions consistent for all 4 channels

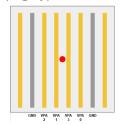

$$jitter = \sigma_{noise} \left(\frac{dV}{dt}\right)^{-1}$$

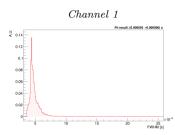
 $Superimposed\ distributions$



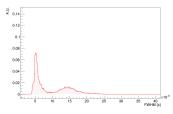


Signals from β particles (90 Sr)

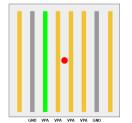

Analog FWHM distributions - β particles

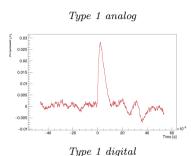


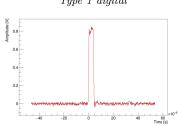
Channel 3

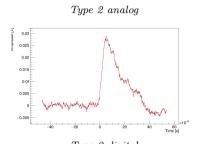


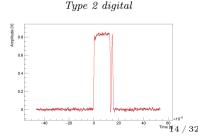
- Lateral channels (ch 0, ch 2) show **complex distribution** with multiple peaks
- Central channels (ch1, ch3) show a single peak at FWHM ~ 5 ns
- β spatial distribution should be isotropic, so second population may be caused by proximity to grounded strips (in grey)

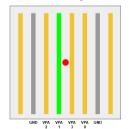


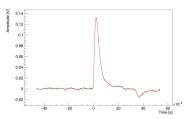




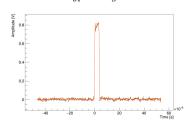

Waveforms from Channel 2 - β particles

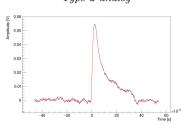

- Investigation of the shape of analog and digital signals
- In lateral Ch. 2 (in green) are present two different populations with different features
- Type 2 signals are wider and often cause the discriminator to trigger multiple times

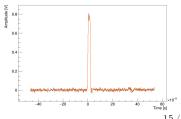




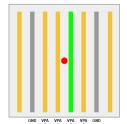
Waveforms from Channel 1 - β particles


- In central Ch. 1 (in green) the two populations seems to be more similar with respect to those in Ch.0
- Type 2 signals are still wider but not as much as in lateral strips

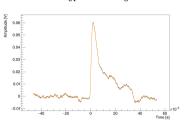

Type 1 analog


Type 1 digital

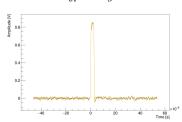
Type 2 analog

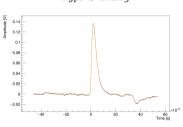


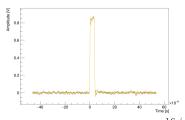
Type 2 digital



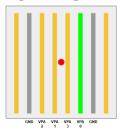
Waveforms from Channel 3 - β particles

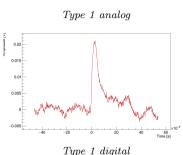

- In central Ch. 3 (in green) the two populations seems to be similar to those in the central Ch. 1
- The two central channels behave similarly, bolstering our hypothesis

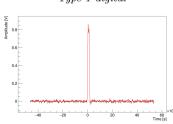

Type 1 analog

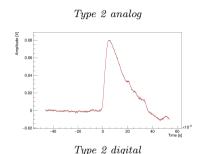

Type 1 digital

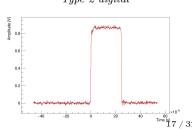
Type 2 analog

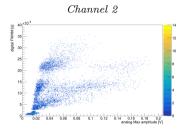


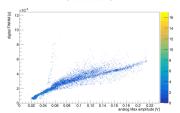

Type 2 digital

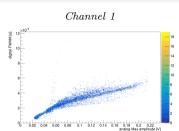


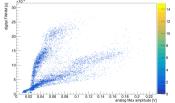

Waveforms from Channel $0 - \beta$ particles


- Finally, lateral Ch. 3 (in green) shows types of population that are very similar to those observed in Ch. 0
- Consistency in populations behaviour. Further investigations are needed to understand if this effect is originated by signal sharing

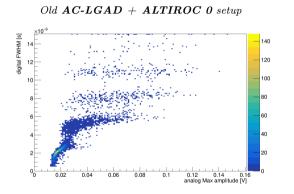


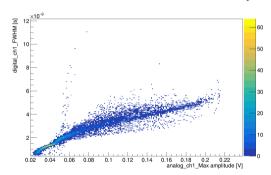



Analog amplitude vs Digital FWHM - β particles


Channel 3

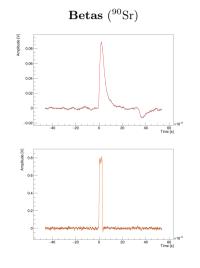
- Discriminator response analyzed by correlating FWHM of the digital output to the ToT of the analog signal
- Amplitude of the analog signal used as a proxy to the ToT
- Linearity can be observed in central channels 1/3
- Clear presence of second population observed in lateral channels 0/2

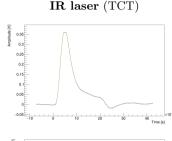


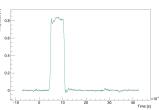

Channel 0

Analog amplitude vs Digital FWHM - β particles

COMPARISON WITH PREVIOUS ALTIROC VERSION

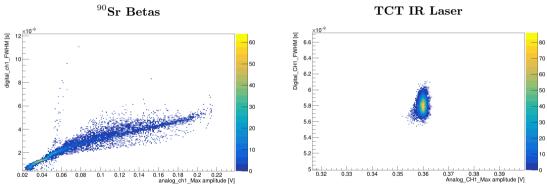



New AC-LGAD + ALTIROC 0V2B setup



Same test performed using an **older ALTIROC setup** (different strip AC-LGAD wirebonded to ALTIROC 0, Testing PCB model 1702) **showed different "step" non-linear structure**

BETA/IR LASER COMPARISON

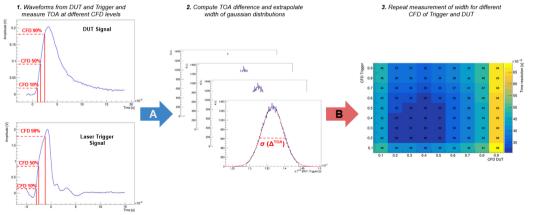


Comparison between Beta and Laser signals

- Similar shape
- Similar FWHM (TCT signals are $\sim 15/20\%$ longer)
- Amplitude distribution of β signals is a Landau; Laser signals is a peak

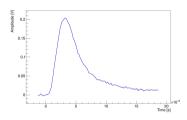
BETA/IR LASER COMPARISON

Discriminator response characterization comparison for 90 Sr β (left) and IR Laser (right)

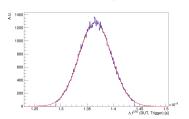


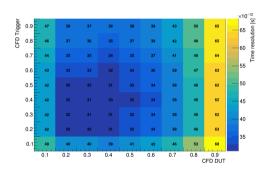
- Using Analog signal amplitude as proxy for ToT
- Good linearity between Digital FWHM and Analog amplitude in the Landau peak of the β distribution
- Digital FWHM is a good alternative to Analog amplitude

4D performances


Time resolution

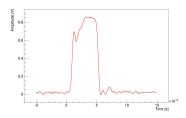
Time resolution measured using IR laser from ToA of ALTIROC signals and Laser Trigger at different values of Constant Fraction Discrimination (CFD) to minimize time-walk effects



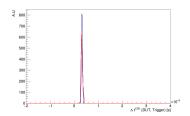

Time resolution

Analog waveform

Time arrival difference



- Gaussian fit of Δt^{CFD} (Laser Trigger, Analog Channel)
- \bullet Computed for CFD levels between 10 and 90%


$$\sigma(\Delta t^{CFD}) = f\left(\sigma_t^{ACLGAD}, \sigma_t^{TCT}, \sigma_{jitter}^{ALTIROC}\right)$$


Time resolution

Digital waveform

Time arrival difference

- Gaussian fit of Δt^{CFD} (Laser Trigger, Digital Channel)
- Computed for CFD levels between 10 and 90%
- **Jitter** down to ~ 14 **ps**, compatible with previous results

EXPECTED ALTIROC JITTER

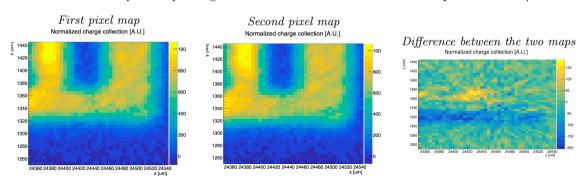
ALTIROC output voltage V_{out} given by the preamp **transistor trans-inductance** g_m the preamp **load impedance** Z_L and by the input voltage on the preamp:

$$V_{out} = g_m Z_L V_{in}$$

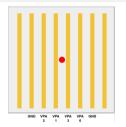
 V_{in} given by the integral of the total current Q_{in} on the PA divided by the device capacitance:

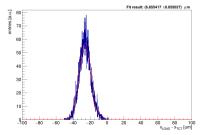
$$V_{in} = \frac{Q_{in}}{C_d} \to Q_{in} = V_{in}C_d$$

Jitter can be extrapolated from the board characteristics g_m and Z_L , the signal output V_{out} , the noise spectral density e_n , and the detector capacitance C_d .


Electronic jitter of the ALTIROC is computed as:

$$\sigma_{jitter}^{ALTIROC} = \frac{e_n C_d \sqrt{t_d}}{Q_{in}} = \frac{e_n C_d \sqrt{t_d}}{V_{in} C_d} = \frac{e_n \sqrt{t_d}}{V_{in}} = \frac{e_n g_m Z_L \sqrt{t_d}}{V_{out}}$$

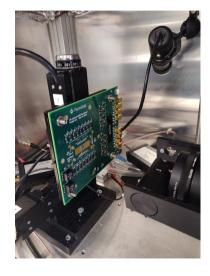

Question: what is the expected ALTIROC jitter contribution for our signals? To be defined


SPATIAL RESOLUTION - SETUP OSCILLATIONS

- Measurement of spatial resolution or precise positions using this setup are not straightforward due to consistent oscillations of the setup
- Consecutive pixel maps using TCT show oscillations in both x and y axes of $\sim 20 \mu m$

SPATIAL RESOLUTION

- Oscillations ~20 μm in the setup (due to board size) make impossible a precise estimate of the spatial resolution
- We can try to estimate spatial dispersion of the dataset using FWHM from digital signals via χ^2 minimization


$$\chi^2 = \sum_{i=strips} \left(\frac{m^i * x + q^i - f^i}{\sigma^i} \right)^2$$

x: laser position

 f^i : FWHM fraction observed by i^{th} strip

• Spatial dispersion of $\sim 10~\mu \mathrm{m}$ observed in data

CURRENT ACTIVITIES

- Mounted "twin" AC-LGAD strip sensor (same geometry, wafer, etc.) on FNAL multi-channel board to repeat TCT and ⁹⁰Sr betas characterizations
- Comparing time resolution and distributions of amplitudes, FWHM, deposed charge, slew-rate, jitter, etc. obtained for sensors mounted on ALTIROC and FNAL board
- Using AC-LGAD mounted on FNAL board to measure AC-LGAD spatial resolution

SCHEDULED TESTS - ALTIROC BOARD

ALTIROC Board:

IR Laser

- ✓ **DAC** scans (Analog vs Digital): response characterization at different DAC th
- ✓ **Time resolution** with Analog Channels (Analog vs Laser Trigger)
- ✓ **Time resolution** with Digital Channels (Digital vs Laser Trigger, 4 channels in parallel)
- ✓ Charge sharing with Analog Channels
- Charge sharing with Digital Channels

Beta

- DAC scans (Analog vs Digital)
- Charge sharing with digital channels (4 channels in parallel)
- **Jitter** measurement

Pulse generator

- Jitter measurement
- Analog noise measurement
- Digital noise measurement
- Characterization of ToA vs TOT

SCHEDULED TESTS - FNAL BOARD

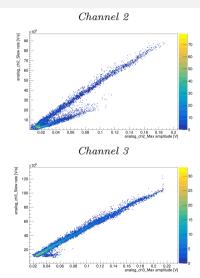
FNAL Board:

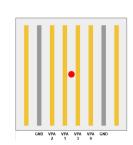
TCT

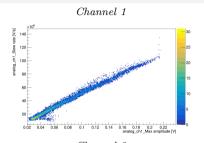
- Space resolution with Analog channel
- Time resolution with Analog channels
- Charge sharing with Analog Channels

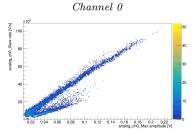
Beta

✓ Charge sharing (4 channels in parallel)


Any idea? We are open to suggestions


RECAP & CONCLUSIONS


- ALTIROC 0V2B proved to be a suitable readout for AC-coupled signals generated in a BNL AC-LGADs
- Characteristics of the readout signals are compatible with expectations for AC-LGAD signals and previous ALTIROC results
- Signals generated in interactions with β from a ⁹⁰Sr source show a **secondary population of wider signals**. This effect was not seen using the IR laser and is potentially a result of signal sharing
- Time resolution of the ALTIROC + AC-LGAD was estimated using an IR-Laser at around 30 ps. A precise estimate of the ALTIROC Jitter is needed to extrapolate AC-LGAD time resolution
- Characterization of the space resolution of the system is difficult due to mechanical constraints. Preliminary results based on the spatial dispersion of signals obtained using the IR laser are presented
- Characterization of the sensor as well as its time and space resolution will be compared to those obtained using a Fermilab-designed trans-impedance test board


BACKUP

Analog amplitude vs Analog slew rate - β particles

