MC Simulations of the Hjet

Ana Sofia Nunes (BNL)
Ancillary-Polarimetry EICWG Monthly Meeting
September 1, 2021

Introduction

Hadron polarimetry method at the HJet: based on elastic scattering pp->pp events (in the CNI interference region), selected based on tof, $E_{\text {dep }}$ and angle of recoil particle

To be understood:

Sources of background
Conditions of tests

Used in MC simulations:
Pythia6, "minimum bias" processes (11, 12, 13, 28, 53, 68, 91, 92, 93, 94, 95), $\mathrm{E}_{\text {beam }}=255 \mathrm{GeV}, 1 \mathrm{~B}$ events HjetSim (by Oleg Eyser), based on Geant4, with:
HJet width $\sigma=26 \mathrm{~mm}$
Beam bunches longitudinal extension $\sigma=3.5 \mathrm{~ns}$
Surrounding material: flanges behind the detectors, cylindrical detector chambers, "target chamber"

* 2 layers of silicon detectors, w/ dead layers
* W/o and w/ ceramic layer (1.6 mm of alumina)

National Laboratory

Setup

T.o.f. Vs $E_{\text {dep }}$

All particles

Protons

Charged pions

- Punch-through protons and charged pions are identified as sources of background to the elastic event selection

Using second layer to veto background

Without ceramic layer

All particles

Particles w/o hits in 2nd layer

Particles w/ hits in second layer

Fraction of particles surviving after veto

- Vetoing particles that reach the second Si layer allows to clean the sample to be used for the polarimetry measurement, by removing both punch-through protons and low t.o.f. and low $E_{\text {dep }}$ particles (charged pions)

Including a ceramic layer in between $\mathbf{S i}$

With ceramic layer, 1.6 mm thickness

All particles

Particles w/o hits in 2nd layer

Particles w/ hits in second layer

- The presence of a ceramic layer, as was used in previous tests, limits the particles that reach the second layer of Si , thereby limiting the effectiveness of its use for sample cleanup

Summary and outlook

The background at low t.o.f. and low $E_{\text {dep }}$ is composed of charged pions

A second layer of Si detectors can in principle be used to veto punch-though protons and background charged pions

The presence of a ceramic layer reduced the effectiveness of the veto

Ongoing: study of the impact of a second Si layer in the pC polarimeters

Backup

Dimensions of setup elements

// flanges behind the detectors

G4VSolid *flange tubs = new G4Tubs("flange_tubs", 0.0, 16.0*cm, $0.5^{*} \mathrm{~cm}, 0^{*} \mathrm{deg}, 360^{*} \mathrm{deg}$);
G4LogicalVolume *flange $\log =$ new G4LogicalVolume(flange_tubs, Steel, "flange", 0, 0, 0);
new G4PVPlacement(rot left, G4ThreeVector($78 .{ }^{*} \mathrm{~cm}, 0.0,0.0$), flange_log, "flange_left", ēxperimentalHall_log, false, 0);
new G4PVPlacement(rot_right, G4ThreeVector($-78 .{ }^{*} \mathrm{~cm}, 0.0,0.0$), flange_log, "flange_right", experimentalHall_log, false, 0);

// cylindrical detector chambers

G4VSolid *chamber tubs = new G4Tubs("chamber_tubs", $15.0^{*} \mathrm{~cm}, 16.0^{*} \mathrm{~cm}, 25.0^{*} \mathrm{~cm}, 0^{*} \mathrm{deg}, 360^{*} \mathrm{deg}$);

G4LogicalVolume *chamber_log = new G4LogicalVolume(chamber_tubs, Steel, "chamber", 0, 0, 0);
new G4PVPlacement(rot left, G4ThreeVector($52.5^{*} \mathrm{~cm}, 0.0,0.0$), chamber_log, "chamber_left", experimentalHall_log, false, 0);
new G4PVPlacement(rot right, G4ThreeVector($-52.5^{*} \mathrm{~cm}, 0.0$ 0.0), chamber_log, "chamber_right", experimentalHall_log, false, 0);
// converter (test)
// use this as template for the plates of the target chamber
I/ (the PYTHIA filter will need to be opened up for particles to hit these plates)
G4VSolid *convert_box = new G4Box("convert_box", 23.*cm, 1.*cm, 16.*cm);
G4LogicalVolume *convert_log = new G4LogicalVolume(convert_box, Steel, "converter", 0, 0, 0);
new G4PVPlacement(0 , G4ThreeVector($0.0,2.375^{*} \mathrm{~cm}, 0.0$), convert log,
"converter_left", experimentalHall_log, false, 0)
new G4PVPlacement(0, G4ThreeeVector $0.0,-2.375^{*} \mathrm{~cm}, 0.0$), convert_log,
"converter_right", experimentalHall_log, false, 0);
// From https://doi.org/10.1016/j.nima.2020.164261
G4double DSi $=77^{*} \mathrm{~cm}$; $/ / \mathrm{cm}$
G4double dSi $=0.047^{*} \mathrm{~cm}$; //cm
G4double dSiOver2 = dSi* $0.5 ; / / \mathrm{cm}$
G4double space $=0.001^{*} \mathrm{~cm}$; // to avoid superpositions
G4double littlespace $=0.0001^{*} \mathrm{~cm}$; // to avoid superpositions
G4double dSiDead $=0.000159^{*} \mathrm{~cm}$; $/ / \mathrm{cm}$
G4double dSiDeadOver2 = dSiDead*0.5; //cm
G4double dCeramic $=0.16^{*} \mathrm{~cm}$; $/ / \mathrm{cm}$
G4double dCeramicOver2 = dCeramic*0.5; //cm

Impact of vetoing

(different formats)

Hits \mathbf{z} distributions

z

All particles
z \{part_id==2212\}

Protons
$z\{$ part_id==211||part_id==-211\}

Charged pions

