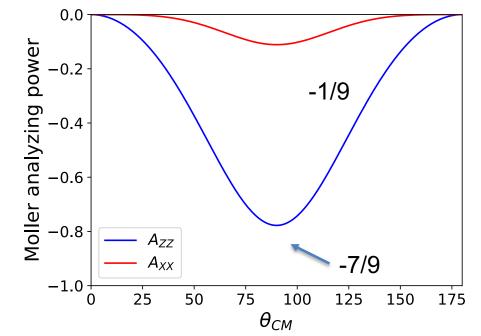
RCS Møller Polarimeter

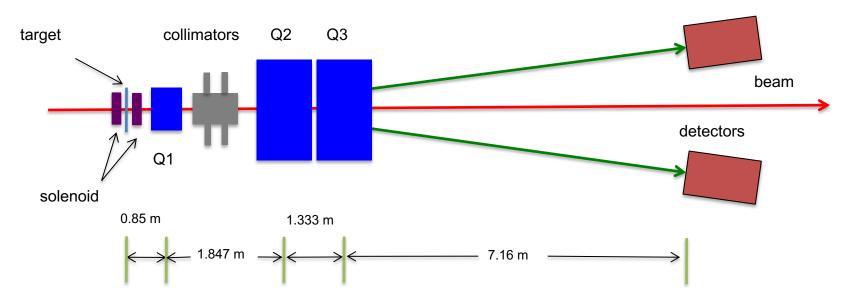
Dave Gaskell Jefferson Lab September 1, 2021

Polarimetry for RCS


Recap from EICUG meeting:

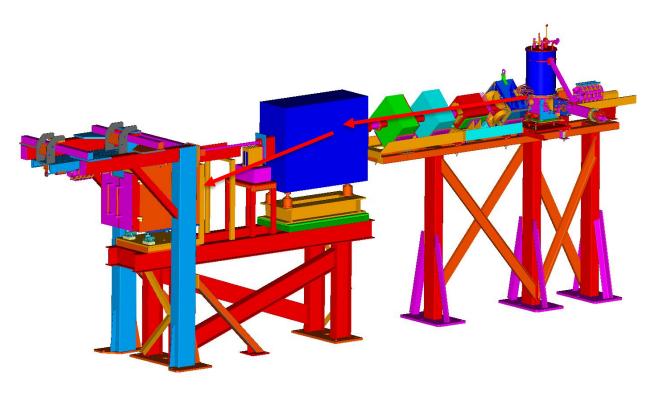
Polarimetry in RCS challenging

→ Beam energy increases from 400 MeV to 5,10,18 GeV
→ Bunch lifetime in RCS is short → 100 ms
→ Low average current: 28 nC bunches at 2 Hz


Møller polarimetry:

→Analyzing power independent of energy
→ Relatively fast measurement times
→ Can't be deployed in RCS since
measurement is destructive (ferromagnetic foil targets)

Møller polarimeter could be deployed in transfer line between RCS and ESR


Møller Polarimeter Space Requirements

Hall C Møller Polarimeter uses "2-quadrupole" spectrometer that allows fixed optics/acceptance for full energy range

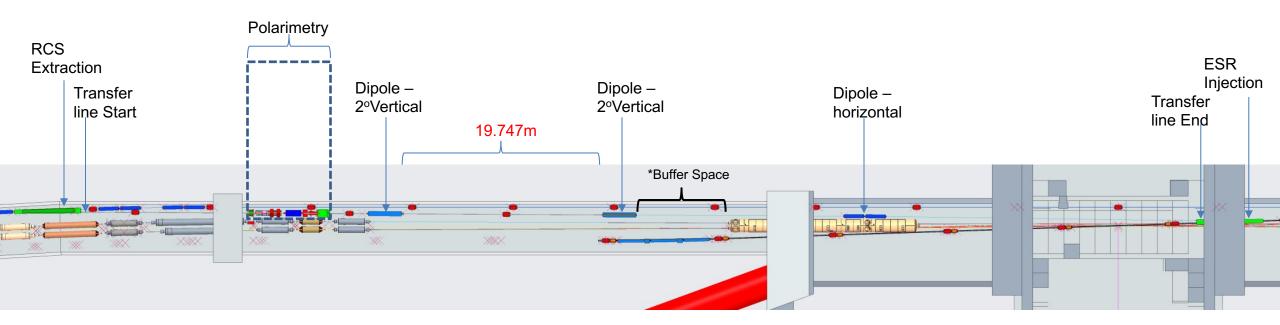
- \rightarrow Length along beamline ~ 11 m, detectors at +/- 50 cm
- → Operates up to 11 GeV
- \rightarrow Requires large bore (10 inch) quadrupoles
- \rightarrow Some space can be recovered after large quads
- → Operation at 18 GeV would require either longer drift to detector, or smaller separation of detectors from beamline

Møller Polarimeter Space Requirements

Hall A Møller Polarimeter uses 4-quadrupole + dipole system
 → Flexible system that allows multiple optics solutions at each energy
 → Acceptance not defined at a single point
 → More compact than Hall C Møller, ~ 7 m long. Detectors below beamline
 → Like Hall C system, operation at higher energy would likely require more space

Hall A Møller in Transfer Line

First look at integrating Møller polarimeter starting with Hall A design

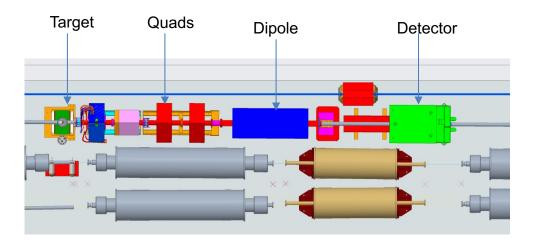

RCS extraction region very crowded

 \rightarrow Extraction beam line shares tunnel with several beam lines

→ RCS starts at lower height, beam is kicked up to same elevation as ESR in the extraction line

→ Would like to avoid placing the polarimeter between height-adjusting dipoles (spin precession) Looking at placing the polarimeter before first dipole, or after last dipole

Beam

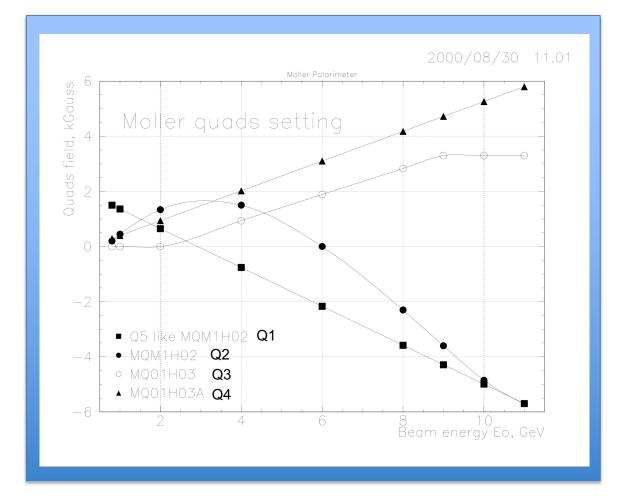

Polarimeter before vertical bend

Picture courtesy Bijan Bhandari

Hall A Møller in Transfer Line

Issues/challenges:

- Access to components difficult once installed little clearance between between beamline elements
- \rightarrow Target magnet and spectrometer magnets need to be more compact
- \rightarrow Dipole bend must be up to avoid detector conflict with floor of tunnel
- → Hall A polarimeter functions up to 11 GeV modifications needed for 18 GeV operation. More space along beamline almost certainly required

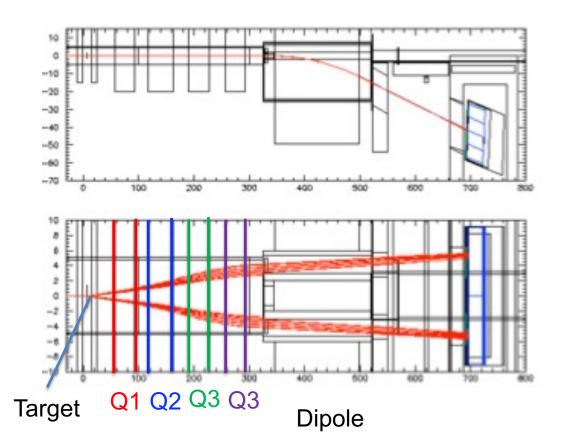

Picture courtesy Bijan Bhandari

Hall A Møller Polarimeter Optics

	Q1	Q2	Q3	Q4
1.1GeV	1.35	0.47	0	0.4
2.2 GeV	0.5	1.5	0	1.05
4.4 GeV	-1.7	0.64	1.5	2.7
6.6 GeV	-2.2	0.75	2.2	3.5
8.8 GeV	-4.1	-3.3	3.2	4.6
11.0 GeV	-5.7	-5.7	3.3	5.8
	Fie	ld Values in	kG	
Max. field	5.8	6.0	6.1	5.8

Dipole bend = 7.3 degrees (maximum accessible at 11 GeV)

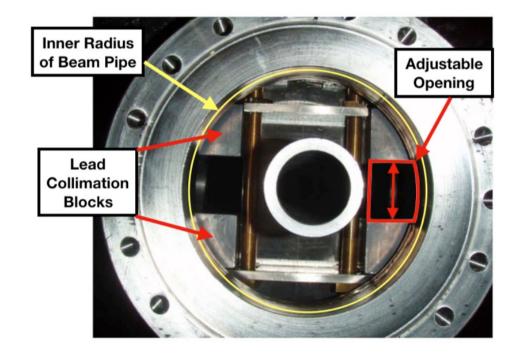
Several magnets at their limits at 11 GeV

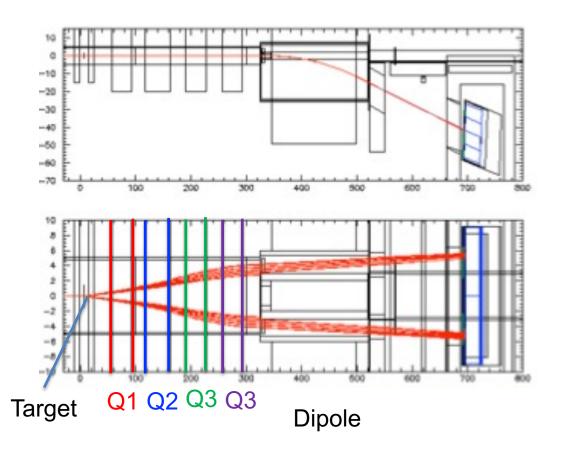


Hall A Møller at Higher Energy

Dipole:

- →Operation at 18 GeV, requires reducing bend from 7.3 to 4.5 degrees
- →Keeping detectors at same vertical distance from beam would require increasing the drift from by a factor of 1.6 (1.8 m to 2.9 m)
- →Could also explore placing detectors closer to beam

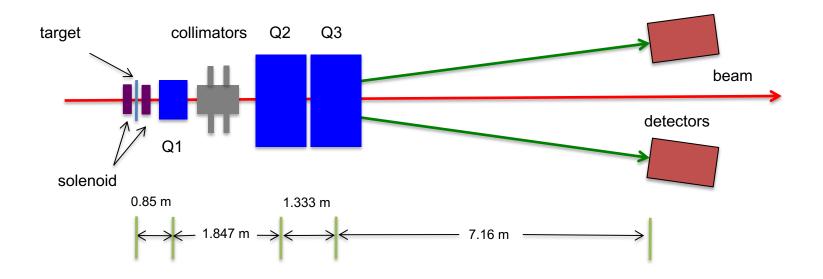

11 GeV


Hall A Møller at Higher Energy

Quads:

- → Quads set to put Møller events +/- 4 cm from nominal beam path at dipole entrance
- → Tune optimized to maximize rate while minimizing systematic uncertainties
- → Need to explore alternate solutions, relaxing optimization constraints
- \rightarrow Moving target further upstream might help

11 GeV



Summary

- JLab Hall A and Hall C Møller polarimeters provide useful basis/prototype for variable-energy polarimeter at RCS extraction line
- Initial design layouts suggest that horizontal spacing might be issue
 - Space along beamline perhaps ok
- More space likely needed for operation at 18 GeV
 - On the order of 1 m extra needed due to dipole limitations
 - Might need more drift before/between quads as well
- Exploration of possible Møller optics solutions the next task

EXTRA

Møller Measurement Time

Time estimates scaled from experience in Hall C @11 GeV \rightarrow 15 minutes for 1% measurement of P_L at 1 μ A, 4 μ m iron target

RCS: average (extracted) current ~ 56 nA (28 nC bunch at 2 Hz) \rightarrow Transverse analyzing power smaller by factor of 7, *figure of merit worse by factor of 49* \rightarrow Time estimate for 1% measurement of beam from RCS: 15 min * (1/0.056) * 49 = too long \rightarrow *Thicker foil (30 µm), reduced precision (10%): Measurement time = 17.5 minutes*

Some discussion of running at larger bunch charge for these measurements