

MISSISSIPPI STATE
UNIVERSITY™

Scintillating Fiber Detector for its use as Off-Momentum detector

Carlos Ayerbe Gayoso
Mississippi State University

2 September 2021

Scintillating fiber detector

“Odeg” layout with aluminum vaporized

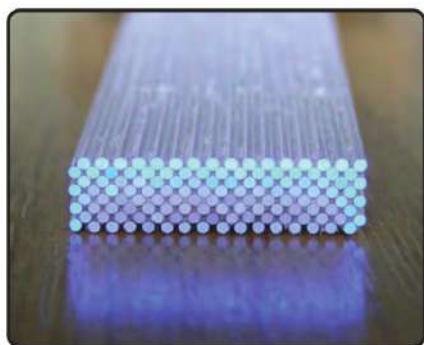
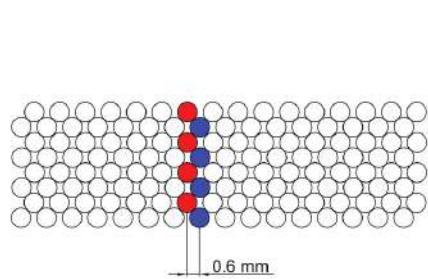
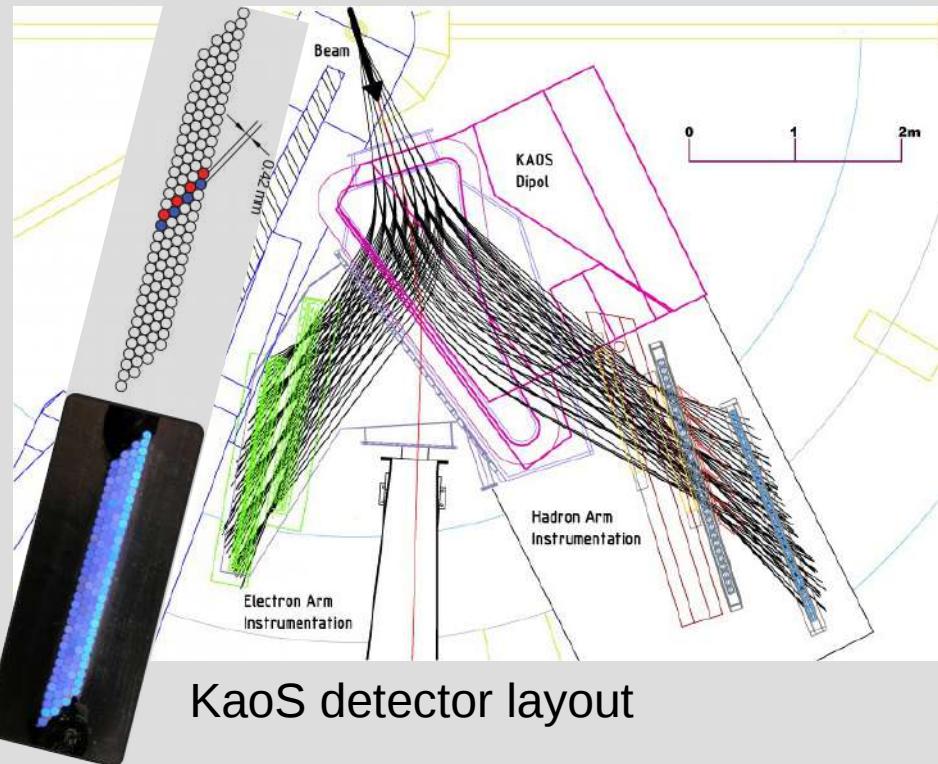
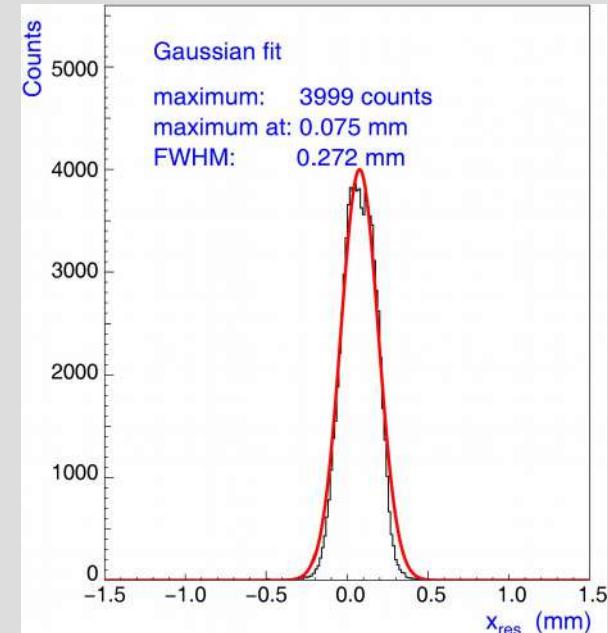
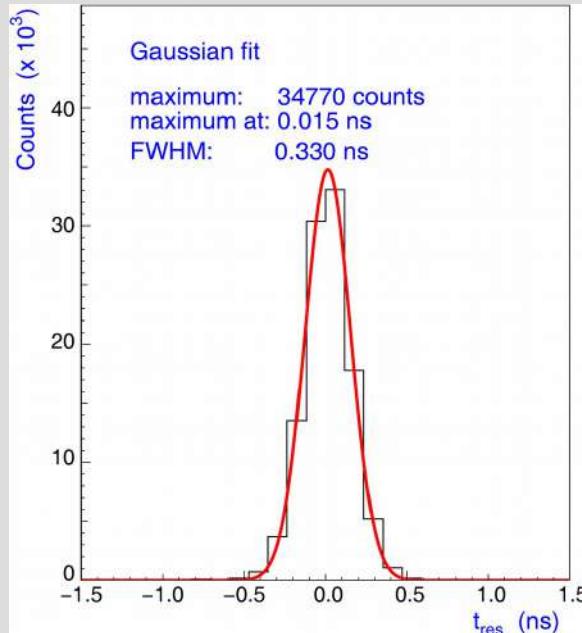
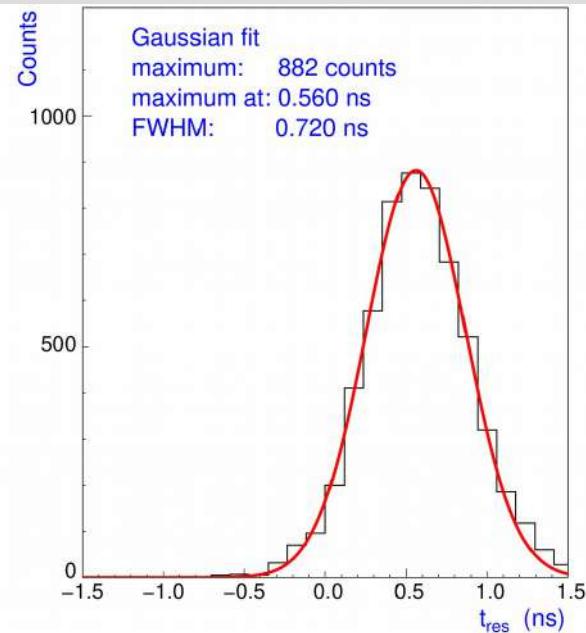
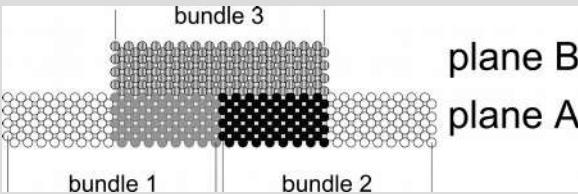
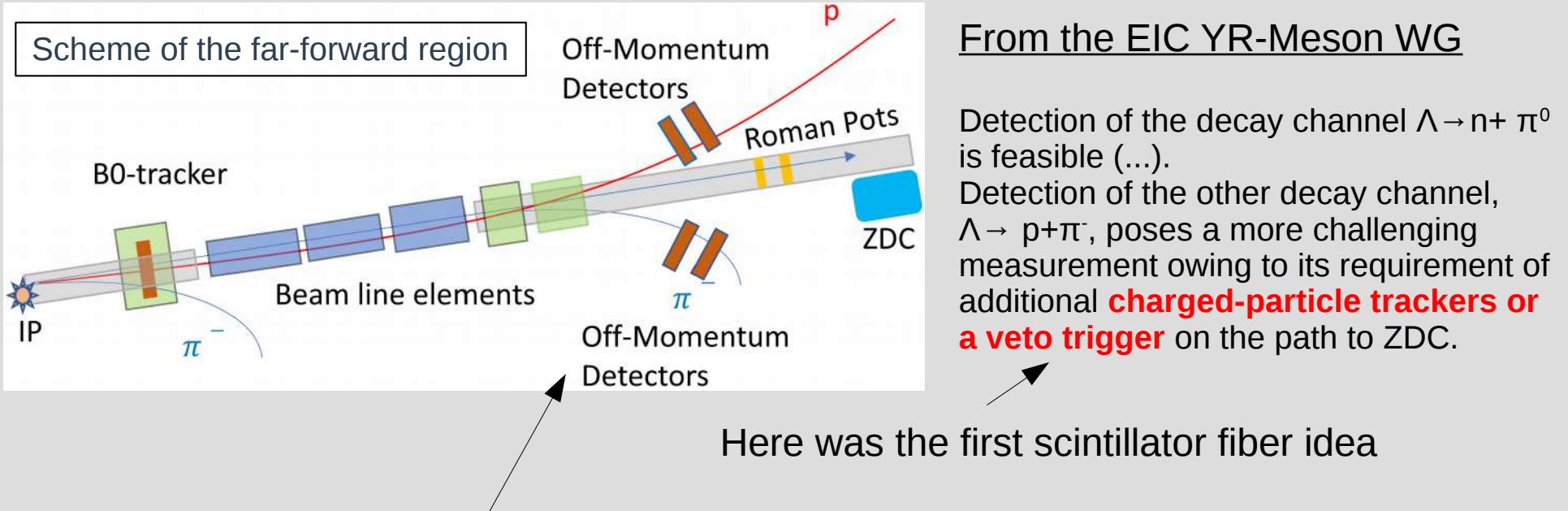







Figure 3.21: Left. Scheme of the fiber arrangement of 0° . Columns of the same color represent a single readout channel. The pitch between each column is of 0.6 mm. Right. Photograph of the bundle arrangement.


KaoS detector layout

Test beam at GSI

Some numbers from 2007 GSI beam test (cocktail beam $\pi^+/\text{p}/\text{d}$ at 1GeV/c) and C beam of 2 AGeV energy:


- Residual of $t_A - t_B$ FWHM = 720ps (cocktail) \rightarrow 510ps single plane, 330ps (carbon) \rightarrow 220ps single plane

- Residual track position $X_A - X_B$ FWHM $\sim 0.27\text{mm}$ (carbon)

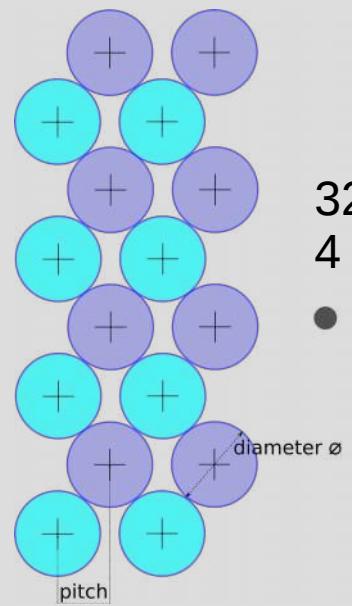
Far-Forward detectors at EIC


The Zero Degree Calorimeter (ZDC) is part of the far forward instrumentation of EIC and play a critical role for different physics topics, in particular the meson structure.

Bill Li question at EIC Early Career Workshop:
“can be used too as Off-momentum Detectors?”

ANSWER: OF COURSE!!

Far-Forward Region


EIC Yellow Report 2021, pag. 548

Detector	(x,z) Position [m]	Dimensions	θ [mrad]	Notes
ZDC	(0.96, 37.5)	(60cm, 60cm, 2m)	$\theta < 5.5$	~ 4.0 mrad at $\phi = \pi$
Roman Pots (2 stations)	(0.85, 26.0) (0.94, 28.0)	(25cm, 10cm, n/a)	$0.0 < \theta < 5.5$	10σ cut.
Off-Momentum Detector	(0.8, 22.5), (0.85, 24.5)	(30cm, 30cm, n/a)	$0.0 < \theta < 5.0$	$0.4 < x_L < 0.6$
B0 Spectrometer	(x = 0.19, $5.4 < z < 6.4$)	(26cm, 27cm, n/a)	$5.5 < \theta < 13.0$	~ 20 mrad at $\phi=0$

The planes have a "hole" for the passage of the hadron beam pipe that has a radius of 3.2cm.

I am not addressing this 'issue' right now

Proposed Layout

Kuraray SCSF78M $\varnothing = 1\text{mm}$

32 channels.
4 fibers per channel
• • •

Theoretical spatial resolution

$$\text{Pitch } (p) = \begin{cases} 0.6 \text{ mm} \\ 0.7 \text{ mm} \end{cases} \quad \sigma \propto \frac{p}{\sqrt{12}} \quad \sigma = \begin{cases} 173 \mu\text{m} \\ 200 \mu\text{m} \end{cases}$$

Width of the bundle

$$L = \varnothing + p \times (ch - 1)$$

$$L = \begin{cases} 19.6 \text{ mm} \\ 22.7 \text{ mm} \end{cases}$$

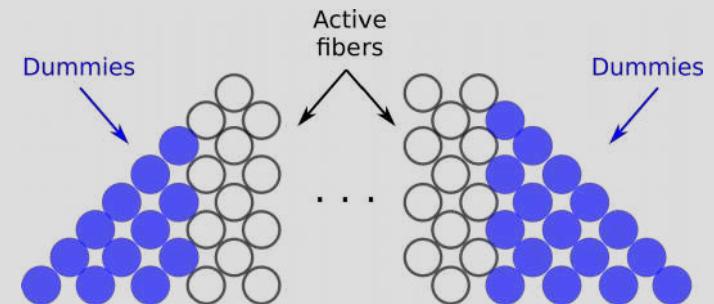
$$p=0.6\text{mm} \rightarrow 300\text{mm} / 19.6\text{mm/module} = 15.3 \rightarrow 16 \text{ modules} \rightarrow 16 \text{ modules} \times 32 \text{ channels/module} = 512 \text{ channels} \quad L_{\text{real}} = 313.6\text{mm}$$

$$p=0.7\text{mm} \rightarrow 300\text{mm} / 22.7\text{mm/module} = 13.2 \rightarrow 14 \text{ modules} \rightarrow 14 \text{ modules} \times 32 \text{ channels/module} = 448 \text{ channels} \quad L_{\text{real}} = 317.8\text{mm}$$

$$2 \text{ Stations} \times 2 \text{ planes (X-Y)/station} = 4 \text{ planes} \quad \#_{\text{channels}} = \begin{cases} 2048 \\ 1792 \end{cases}$$

Cost (fibers)

- Assuming the larger number of channels → 512ch /plane


$$512 \text{ ch/plane} \times 4 \text{ fibers/ch} \times (30\text{cm} + 20\text{cm})/\text{fib} = 102,400\text{cm/plane} \equiv 1024\text{m/plane}$$

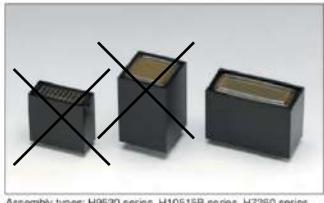
$$28 \text{ dummies/bundle} \times 16/\text{bundle/plane} \times 40\text{cm/dummies} = 179200 \text{ cm} \equiv 179.2 \text{ m/plane}$$

Fibers + dummies → 1203.2m/plane

$$\begin{aligned} \times 4 \text{ planes} &= 4812.8\text{m} + 1 \text{ extra plane (contingency)} \\ &= 6016\text{m} \rightarrow 6100\text{m} \end{aligned}$$

SCSF-78M-1mm-D-6100m-B J

I've been waiting for a quote from Kuraray since last week.

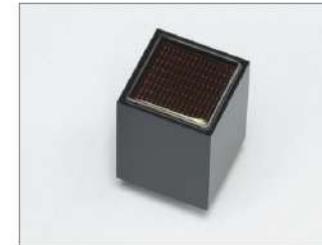

An estimation from an old quote in 2009.
7km (0.83mm) → ¥1.6M = \$17,080 (2009) →
inflation accumulated (USA) \$21,700
I would assume ~\$30k

Cost (PMTs)

Photomultiplier tube with active divider circuit
 Linear multianode PMT assembly, 8-channel (H9530 series)/
 16-channel (H10515B series) / 32-channel (H7260 series)

FEATURES

- High cathode sensitivity
 Luminous 500 μ A/lm Typ. (-20 type)
- Effective area per channel
 H9530 / H10515 / H11452 series ... 2.0 mm \times 2.5 mm \times 6 channels
 H10515B / H1145B series ... 0.8 mm \times 16 mm \times 16 channels
 H7260 / H1146B series 0.8 mm \times 7 mm \times 32 channels
- High speed response
 H9530 series rise time 0.7 ns Typ.
 H10515B series, H7260 series rise time ... 0.6 ns Typ.
- Good anode uniformity (H9530 series)
 1:1.1 Max. (at -1000 V and peak wavelength)
- Low cross-talk (H9530 series)
 0.1 % Typ. (each channel)
 Black slit faceplate used
- Built in preamplifier and high voltage power supply circuit (Module types)


32 lineal \rightarrow 64 units
\$3507/unit

MULTIANODE
 PHOTOMULTIPLIER TUBE ASSEMBLY
H12428 SERIES

8 \times 8 Multianode, High Speed Response, High Collection Efficiency
 30 mm Square, Super Bialkali and Ultra Bialkali Photocathode
 12-stage, Head-on Type

FEATURES

- High Quantum Efficiency
- Compact
- 8 \times 8 Multianode
- Effective Area: 23 mm \times 23 mm
- High Speed Response
- High Cathode Sensitivity
 Luminous 105 μ A/lm Typ. (-100/-103 Type)
 Luminous 135 μ A/lm Typ. (-200/-203 Type)
- Weight: Approx. 62 g

8x8=64 ch \rightarrow 32 units
\$2053/unit

FLAT PANEL TYPE
 MULTIANODE PMT ASSEMBLY
H12700 SERIES / H14220 SERIES

FEATURES

- Large effective area: 46.5 mm \times 46.5 mm
- Packing density: 87 %
- 8 \times 8 multianode,
 Pixel size: 6 mm \times 6 mm / anode
- High quantum efficiency: 33 % Typ.
- Small dead space
- Fast time response
- Two types for HV input
 H12700A series / H14220A: Cable Input type
 H12700B series / H14220B: Connector Input type
- With tapered divider (-10 type)
- High sensitivity in green region: H14220 series

8x8=64 ch \rightarrow 32 units
\$4971/unit

The PMTs have spectral response and peak sensitive close to the emission spectra of the fibers

Cost (SiPMTs)

HAMAMATSU
PHOTON IS OUR BUSINESS

MPPC® (Multi-Pixel Photon Counter) arrays

S13361-6050 series

MPPC arrays in a chip size package miniaturized through the adoption of TSV structure

The S13361-6050 series is a MPPC array for precision measurement miniaturized by the use of TSV (through-silicon via) and CSP (chip size package) technologies. The adoption of a TSV structure made it possible to eliminate wiring on the photosensitive area side, resulting in a compact structure with little dead space compared with previous products. The four-side buttable structure allows multiple devices to be arranged side by side to fabricate large-area devices. They are suitable for applications, such as medical, non-destructive inspection, environmental analysis, and high energy physics experiment, that require photon counting measurement.

Features

- Low crosstalk
- Low afterpulses
- Outstanding photon counting capability (outstanding photon detection efficiency versus numbers of incident photons)
- Compact chip size package with little dead space
- Low voltage ($V_{op}=53$ V typ.) operation
- High gain: 10^5 to 10^6

HAMAMATSU
PHOTON IS OUR BUSINESS

MPPC® (Multi-Pixel Photon Counter) arrays

S13361-3050 series

MPPC arrays in a chip size package miniaturized through the adoption of TSV structure

The S13361-3050 series is a MPPC array for precision measurement miniaturized by the use of TSV (through-silicon via) and CSP (chip size package) technologies. The adoption of a TSV structure made it possible to eliminate wiring on the photosensitive area side, resulting in a compact structure with little dead space compared with previous products. The four-side buttable structure allows multiple devices to be arranged side by side to fabricate large-area devices. They are suitable for applications, such as medical, non-destructive inspection, environmental analysis, and high energy physics experiment, that require photon counting measurement.

Features

- Low crosstalk
- Low afterpulses
- Outstanding photon counting capability (outstanding photon detection efficiency versus numbers of incident photons)
- Compact chip size package with little dead space
- Low voltage ($V_{op}=53$ V typ.) operation
- High gain: 10^5 to 10^6

The SiPMs have spectral response and peak sensitive close to the emission spectra of the fibers

$4 \times 4 = 16\text{ch} \rightarrow 128$ units
\$453.75/unit

HAMAMATSU
PHOTON IS OUR BUSINESS

MPPC® (Multi-Pixel Photon Counter)

S14160/S14161 series

Low breakdown voltage type MPPC for scintillation detector

The S14160/S14161 series achieve higher PDE (photon detection efficiency) and lower operation voltage than other MPPC to adapt for PET and radiation monitor application. They achieve small dead space in a photosensitive area with HWB (hole wire bonding) technology (Patent pending). And the gap from the photosensitive area edge to the package edge is only 0.2 mm. This package realizes the four-side buttable arrangement.

Features

- Higher PDE (50% at λp , $V_{op}=V_{BR} + 2.7$ V)
- Lower voltage ($V_{BR}=38$ V typ.) operation
- Small dead space in photosensitive area
- Low afterpulses and crosstalk
- High gain: 10^6 order
- Excellent time resolution
- Immune to effects of magnetic fields

$4 \times 4 = 16\text{ch} \rightarrow 128$ units
\$144.00/unit

$4 \times 4 = 16\text{ch} \rightarrow 128$ units
\$166.25/unit
8x8 not answer

$8 \times 8 = 64\text{ch} \rightarrow 32$ units
\$628.75/unit

$4 \times 4 = 16\text{ch} \rightarrow 128$ units
\$340.00/unit
Larger area/channel

Summary

	PMT	SiPMT	TOTAL \$ (with est. Fibers)	Cost per channel \$ (2048)
Max cost	\$224,448 (H7260)	\$58,080 (S13361-6050NE-04)	254,448 / 88,080	124.24 / 43
Min cost	\$65,692 (H12428-100)	\$18,432 (S14161-3050HS-04)	95,692 / 48,432	46.75 / 23.65
Fav cost (larger pixel area)	\$159,072 (H14220B)	\$43,520 (S14161-6050HS-04)	189,072 / 73,520	92.32 / 35.9

Naturally, it needs to be included FE electronics, power and R&D specially for the SiPMT