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PROTONS & 
NEUTRONS

QUARKS, GLUONS  
AND THE QUANTUM 

 VACUUM
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The structure of matter
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The Standard Model of nuclear and 
particle physics
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The structure of matter

Phiala Shanahan, MIT

The Standard Model isn’t everythingBUT

• Dark matter and dark energy


• Neutrino masses


• Matter–antimatter asymmetry


• Gravity


• Naturalness problems


• …
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The structure of matter

Phiala Shanahan, MIT

Understanding the quark and gluon 
structure of matter

Emergence  
of complex 
structure in 

nature Backgrounds and 
benchmarks for 

searches for new 
physics
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The structure of matter

Phiala Shanahan, MIT

First-principles studies of the Standard 
Model of nuclear and particle physics

• Demand extreme-scale 
computation 
 
 
 

• Require guarantees of 
exactness, incorporation of 
complex symmetries

Acceleration via 
“AB-INITIO AI”
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The structure of matter

Phiala Shanahan, MIT

First-principles studies of the Standard 
Model of nuclear and particle physics

• Demand extreme-scale 
computation 
 
 
 

• Require guarantees of 
exactness, incorporation of 
complex symmetries

Acceleration via 
“AB-INITIO AI”

E.g., Not enough 
supercomputing in the world to 

compute Standard Model prediction 
for dark matter scattering from 

detectors!
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IAIFI: Ab-initio AI

Phiala Shanahan, MIT

Machine learning that incorporates
first principles, best practices, and domain knowledge

from fundamental physics

 “eye-phi”

The NSF AI Institute for Artificial Intelligence
and Fundamental Interactions (IAIFI)
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AB-INITO AI  
FOR  

AB-INITIO STUDIES  
OF THE STANDARD MODEL  

OF PARTICLE PHYSICS

Phiala Shanahan, MIT11



Strong interactions

Phiala Shanahan, MIT

Binds quarks and 
gluons into protons, 
neutrons, pions etc. Binds protons and 

neutrons into nuclei

Forms other types 
of exotic matter 
e.g., quark-gluon 
plasma 

Study nuclear structure from the strong interactions


Quantum Chromodynamics (QCD)

Strongest of the four forces in nature
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Strong interactions

Phiala Shanahan, MIT

Interaction strength depends on energy 
[Gross, Politzer, Wilczek, Nobel 2004]

Strong coupling

Energy

Perturbation theory at 
high energies

Oexact = O0 +O1↵s +O2↵
2
s + . . .

Oexact = O0 +O1↵s +O2↵
2
s + . . .

Low-energy QCD is 
non-perturbative
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Lattice QCD

Phiala Shanahan, MIT

t ! i⌧
Numerical first-principles approach to  

non-perturbative QCD

• QCD equations            integrals over the values of quark and 
gluon fields on each site/link (QCD path integral)


• ~1012 variables (for state-of-the-art)

• Evaluate by importance sampling


• Paths near classical action 
dominate


• Calculate physics on a set 
(ensemble) of samples of the 
quark and gluon fields

x

tt0 t1 t2 tn

xA

xB
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L3 ⇥ T ⇡ 323 ⇥ 64

4D Euclidean space-time grid


• Non-zero lattice spacing 
(take limit as spacing becomes small)


• Volume

Lattice QCD

Phiala Shanahan, MIT

t ! i⌧

hOi =
1

Z

Z
DAD D O[A,  ]e�S[A,  ]

hOi '
1

Nconf

NconfX

i

O([U i])

Approximate the QCD path integral by Monte Carlo

with field configurations        distributed according toU i e�S[U ]

Numerical first-principles approach to  
non-perturbative QCD

L3 ⇥ T ⇡ 643 ⇥ 128
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15



Lattice QCD

Phiala Shanahan, MIT

Gauge field configurations represented by  
~1010  links             encoded as SU(3) matrices 
(3x3 complex matrix      with                     ,                   ) 
i.e., ~1012 double precision numbers

Configurations sample probability distribution 
corresponding to LQCD action   
(function that defines the quark and gluon dynamics)

Weighted averages over configurations determine 
physical observables of interest

Calculations use ~103 configurations

Workshop track - ICLR 2018

NEURAL NETWORK PARAMETER REGRESSION FOR
LATTICE QUANTUM CHROMODYNAMICS SIMULATIONS
IN NUCLEAR AND PARTICLE PHYSICS
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Department of Physics
William & Mary
Williamsburg, VA 23187-8795, USA
Jefferson Laboratory
Newport News, VA 23606, USA
peshanahan@wm.edu

Daniel Trewartha
Jefferson Laboratory
Newport News, VA 23606, USA
danielt@jlab.org

William Detmold
Center for Theoretical Physics
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
wdetmold@mit.edu

ABSTRACT

Nuclear and particle physicists seek to understand the structure of matter at the
smallest scales through numerical simulations of lattice Quantum Chromodynam-
ics (LQCD) performed on the largest supercomputers available. Multi-scale tech-
niques have the potential to dramatically reduce the computational cost of such
simulations, if a challenging parameter regression problem matching physics at
different resolution scales can be solved. Simple neural networks applied to this
task fail because of the dramatic inverted data hierarchy that this problem dis-
plays, with orders of magnitude fewer samples typically available than degrees
of freedom per sample. Symmetry-aware networks that respect the complicated
invariances of the underlying physics, however, provide an efficient and practical
solution. Further efforts to incorporate invariances and constraints that are typical
of physics problems into neural networks and other machine learning algorithms
have potential to dramatically impact studies of systems in nuclear, particle, con-
densed matter, and statistical physics.

1 DATA

LQCD is a Markov Chain Monte-Carlo (MCMC) importance sampling method based on the gen-
eration of ensembles of configurations of the underlying physical degrees of freedom (quark and
gluon fields) Rothe (1992). Configurations are represented as sets of links Uµ(x) between sites on
four-dimensional hypercubic space-time lattices (x denotes the spacetime coordinates of the origin
site and µ the direction of the link). Each link can be encoded as an SU(3) matrix (a 3⇥ 3 complex
matrix M with M�1 = M† and det[M ] = 1, where M† = (M⇤)T is the Hermitian conjugate),
and a configuration is encoded by O(107) links, i.e., O(109) floating point or double precision
numbers for a typical state-of-the-art calculation. Since these configurations sample the probability
distribution corresponding to the LQCD action (a function defining the quark and gluon dynamics),
weighted ensemble averages determine physical observables of interest; calculations typically use
ensembles of O(103) configurations.

The parameter regression task studied here is the determination of the LQCD action parameters, �
and m, corresponding to a given ensemble of configurations. Because of the significantly inverted
data hierarchy of LQCD datasets, this is a challenging problem. However, the physics encoded by
an ensemble of configurations is invariant under a number of complex symmetries, namely discrete
space-time translations and rotations on the hypercubic space, as well as ‘gauge transformations’.
The latter are continuous Lie group transformations at each space-time point on the lattice, i.e.,

1

M
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det[M ] = 1
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New simulation strategies 
for lattice gauge theory
Michael G. Endres Lattice 2016

Multiscale Monte Carlo equilibration: Pure Yang-Mills theory
Michael G. Endres, Richard C. Brower, William Detmold, Kostas Orginos, Andrew V. Pochinsky

Multigrid  ideas for HMC
Very important and difficult problem
Major focus of US Exascale Software
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ABSTRACT

Nuclear and particle physicists seek to understand the structure of matter at the
smallest scales through numerical simulations of lattice Quantum Chromodynam-
ics (LQCD) performed on the largest supercomputers available. Multi-scale tech-
niques have the potential to dramatically reduce the computational cost of such
simulations, if a challenging parameter regression problem matching physics at
different resolution scales can be solved. Simple neural networks applied to this
task fail because of the dramatic inverted data hierarchy that this problem dis-
plays, with orders of magnitude fewer samples typically available than degrees
of freedom per sample. Symmetry-aware networks that respect the complicated
invariances of the underlying physics, however, provide an efficient and practical
solution. Further efforts to incorporate invariances and constraints that are typical
of physics problems into neural networks and other machine learning algorithms
have potential to dramatically impact studies of systems in nuclear, particle, con-
densed matter, and statistical physics.

1 DATA

LQCD is a Markov Chain Monte-Carlo (MCMC) importance sampling method based on the gen-
eration of ensembles of configurations of the underlying physical degrees of freedom (quark and
gluon fields) Rothe (1992). Configurations are represented as sets of links Uµ(x) between sites on
four-dimensional hypercubic space-time lattices (x denotes the spacetime coordinates of the origin
site and µ the direction of the link). Each link can be encoded as an SU(3) matrix (a 3⇥ 3 complex
matrix M with M�1 = M† and det[M ] = 1, where M† = (M⇤)T is the Hermitian conjugate),
and a configuration is encoded by O(107) links, i.e., O(109) floating point or double precision
numbers for a typical state-of-the-art calculation. Since these configurations sample the probability
distribution corresponding to the LQCD action (a function defining the quark and gluon dynamics),
weighted ensemble averages determine physical observables of interest; calculations typically use
ensembles of O(103) configurations.

The parameter regression task studied here is the determination of the LQCD action parameters, �
and m, corresponding to a given ensemble of configurations. Because of the significantly inverted
data hierarchy of LQCD datasets, this is a challenging problem. However, the physics encoded by
an ensemble of configurations is invariant under a number of complex symmetries, namely discrete
space-time translations and rotations on the hypercubic space, as well as ‘gauge transformations’.
The latter are continuous Lie group transformations at each space-time point on the lattice, i.e.,
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Generate QCD gauge fields

-log(probability density)

QCD gauge field configurations sampled via 

Hamiltonian dynamics + Markov Chain Monte Carlo
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Generate QCD gauge fields
amiltonian dynamics can be used to produce distant proposals for the Metropolis algorithm, thereby avoiding the slow exploration of 
the state space that results from the diffusive behaviour of simple random-walk proposals 

Generate field configurations           with probability         
�(x)

P [�(x)] ⇠ e�S[�(x)]

Hamiltonian/Hybrid Monte Carlo

Burn-in time and correlation length dictated by Markov chain ‘auto-
correlation time’: shorter autocorrelation time implies less computational 
cost
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Generate QCD gauge fields
QCD gauge field configurations sampled via 


Hamiltonian dynamics + Markov Chain Monte Carlo

Updates diffusive

Lattice spacing 0

Number of updates 
to change fixed 

physical length scale
∞

“Critical slowing-down”  
of generation of uncorrelated samples
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Generate QCD gauge fields
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QCD gauge field configurations sampled via 


Hamiltonian dynamics + Markov Chain Monte Carlo
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Workflow of a lattice QCD calculation

Field configuration generation by e.g.,
• Multi-scale approaches
• Accelerated HMC
• Direct sampling methods
• …

Efficient computations of correlation  
functions/observables 
Yoon, Bhattacharya, Gupta, Phys. Rev. D 100, 014504 (2019) 
Zhang et al, Phys. Rev. D 101, 034516 (2020) 
Nicoli et al., 2007.07115 (2020)

Sign-problem avoidance via contour 
deformation of path integrals
Alexandruet al.,  Phys. Rev. Lett. 121 (2020), 
Detmold et al., 2003.05914 (2020)

Worldwide efforts to apply ML tools to many 
aspects of the lattice QCD workflow

Shanahan et al., Phys.Rev.D 97 (2018) 
Albergo et al., Phys.Rev.D 100 (2019) 
Rezende et al., 2002.02428 (2020) 
Kanwar et al., Phys.Rev.Lett. 125 (2020)  
Boyda et al., 2008.05456 (2020) 

 
Tanaka and Tomiya, 1712.03893 (2017) 
Zhou et al., Phys.Rev.D 100 (2019) 
Li et al., PRX 10 (2020)  
Pawlowski and Urban 1811.03533 (2020) 
Nagai, Tanaka, Tomiya 2010.11900  (2020) 
Luo, Clark Stokes, 2012.05232 (2020) 
Favoni et al, 2012.12901 (2021) 
Luo et al, 2101.07243 (2021)

Analysis, order parameters, insights 
Tanaka and Tomiya, Journal of the Physical Society  
of Japan, 86 (2017) 
Wetzel and Scherzer, Phys. Rev. B 96 (2017) 
S. Blȕcher et al., Phys. Rev. D 101 (2020) 
Boyda et al., 2009.10971 (2020)

*Early developmental stage — many of these 
papers use toy theories instead of QCD
*Much more related work in e.g., condensed 
matter context

Machine learning for LQCD
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*Early developmental stage — many of these 
papers use toy theories instead of QCD
*Much more related work in e.g., condensed 
matter context

Approaches must rigorously preserve quantum 

field theory in applicable limits  
  AB-INITIO AI

Worldwide efforts to apply ML tools to many 
aspects of the lattice QCD workflow

Machine learning for LQCD
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Generate QCD gauge fields
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Generate field configurations         with probability         �(x)

P [�(x)] ⇠ e�S[�(x)]

6DPSOLQJ�ODWWLFH�FRQILJV�䍙�JHQHUDWLQJ�LPDJHV

��

OLNHO\

OLNHO\

XQOLNHO\

OLNHO\

OLNHO\

XQOLNHO\

>.DUUDV��/DQH��$LOD���19,',$�����������@

�ORJ�SURE� ����

�ORJ�SURE� ���

�ORJ�SURE� �������

6DPSOLQJ�ODWWLFH�FRQILJV�䍙�JHQHUDWLQJ�LPDJHV

��

OLNHO\

OLNHO\

XQOLNHO\

OLNHO\

OLNHO\

XQOLNHO\

>.DUUDV��/DQH��$LOD���19,',$�����������@

�ORJ�SURE� ����

�ORJ�SURE� ���

�ORJ�SURE� �������

6DPSOLQJ�ODWWLFH�FRQILJV�䍙�JHQHUDWLQJ�LPDJHV

��

OLNHO\

OLNHO\

XQOLNHO\

OLNHO\

OLNHO\

XQOLNHO\

>.DUUDV��/DQH��$LOD���19,',$�����������@

�ORJ�SURE� ����

�ORJ�SURE� ���

�ORJ�SURE� �������

Test case: scalar lattice field theory

One real number                          per lattice site x (2D lattice)  
 
 
 

Action: kinetic terms and quartic coupling 
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Generate QCD gauge fields

Parallels with image generation problem
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Generate field configurations           with probability         
�(x)

P [�(x)] ⇠ e�S[�(x)]
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Machine learning QCD
CIFAR benchmark image set for 
machine learning

Each image has meaning


32 x 32 pixels x 3 cols 
≃3000 numbers


60000 samples


Local structures are 
important


Translation-invariance within 
frame

Ensemble of lattice QCD gauge 
fields

Ensemble of gauge fields has 
meaning


643 x128 x 4 x Nc2 x 2 
≃109 numbers


~1000 samples


Long-distance correlations are 
important


Gauge and translation-
invariant with periodic 
boundaries
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Machine learning QCD
Physics is invariant under 

specific field transformations

Rotation, translation (4D), 
with boundary conditions

Gauge field 
configuration

Transformed  
gauge field configuration

Encode same physics

Ensemble of lattice QCD gauge 
fields

Ensemble of gauge fields has 
meaning


643 x128 x 4 x Nc2 x 2 
≃109 numbers


~1000 samples


Long-distance correlations are 
important


Gauge and translation-
invariant with periodic 
boundaries
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Machine learning QCD
Physics is invariant under 

specific field transformations

Gauge transformation

Gauge field 
configuration

Transformed  
gauge field configuration

Encode same physics

Uµ(x)

x

µ̂

⌫̂

x+ µ̂

3

tion value of an operator O that defines some physical quantity is given by:

hOi =
1

Z

Z
D D ̄DAO[ ,  ̄, A] e�S[ , ̄,A] (1)

=
1

Z

Z
DUÕ[U ] e�S̃[U ]

, (2)

where Z =
R
D D ̄DA e

�S[ , ̄,A], the (anti-)fermion and gluon fields (gauge fields) are denoted
by  ( ̄) and A, and S[ ,  ̄, A] is the discretised QCD action (defined in Appendix B 1). In the
second line, the fermion and anti-fermion fields are integrated out exactly, and the gauge fields are
transformed to link fields U = e

iA, to give an e↵ective action S̃[U ] and operator Õ[U ] depending
only on the gluon link fields. The resulting integral can be approximated as

hOi u 1

Ncfg

NcfgX

i=1

O[Ui], (3)

where the gauge field configurations Ui (i indexes the configurations in a given “ensemble” of

fields) are distributed according to the probability measure e
�S̃[U ]. In practice, this is guaranteed

by sampling the fields from a Markov chain Monte-Carlo stream for which this probability measure
is a fixed point. These representative gauge fields are the input data for the ML approaches to
parametric regression studied here. For additional details of the LQCD approach, see Refs. [2, 3]
and Appendix B 1.

Lattice QCD gauge fields are represented as links between sites on a 4-dimensional lattice
of volume2 V = L

3
⇥ T , with the lattice sites separated by some physical distance a, typically

0.05–0.15 fm. Each link, labelled by Uµ(x), where x denotes the spacetime coordinates of the
origin site and µ the direction of the link, is encoded by an SU(3) matrix (a 3 ⇥ 3 complex
matrix M with M

�1 = M
† and det[M ] = 1)3. Links in opposing directions are related via

U�µ(x) = U
†
µ(x � µ̂), and only links in the positive direction are stored. In this format, a gauge

field used in typical modern lattice QCD calculations, where for example L = 64 and T = 128, is
described by L

3
⇥T ⇥4⇥18 ⇡ O(109) floating point or double precision numbers, where the factor

of 4 arises from the number of positive spacetime directions (labelled by µ). In order to recover
QCD results, calculations must be performed on a number of ensembles of field configurations with
di↵erent lattice spacings a and lattice volumes V , and the continuum (a ! 0) and large-volume
(V ! 1) limits must be taken.

The governing equations of QCD and their lattice counterparts have a variety of symmetries,
some that are highly non-trivial. The symmetries satisfied by ensembles of gauge fields are of par-
ticular interest in the context of the ML approaches studied here, as they place strong restrictions
on numerical operations that can be performed on lattice data to extract physically meaningful
results. In particular, lattice QCD is invariant under a local symmetry of the gauge fields known
as a gauge symmetry; this is an invariance under local multiplications of link variables by SU(3)
matrices

Uµ(x) ! U
0

µ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂) for all ⌦(x) 2 SU(3), (4)

referred to as a gauge transformation (note that the matrix ⌦(x) di↵ers at every spacetime point).
This symmetry is not apparent from the numerical representation of a QCD configuration, but

2 The spatial, L, and temporal, T , extents of the lattice geometry are often distinct.
3 Here, M† = (M⇤)T is the Hermitian conjugate. An SU(3) matrix can be specified by 8 real numbers, but typically
the redundant representation with 18 real numbers is used.
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Ensemble of lattice QCD gauge 
fields

Ensemble of gauge fields has 
meaning


643 x128 x 4 x Nc2 x 2 
≃109 numbers


~1000 samples


Long-distance correlations are 
important


Gauge and translation-
invariant with periodic 
boundaries



Phiala Shanahan, MIT

Machine learning QCD
CIFAR benchmark image set for 
machine learning

Each image has meaning


32 x 32 pixels x 3 cols 
≃3000 numbers


60000 samples


Local structures are 
important


Translation-invariance within 
frame

Ensemble of lattice QCD gauge 
fields

Ensemble of gauge fields has 
meaning


643 x128 x 4 x Nc2 x 2 
≃109 numbers


~1000 samples


Long-distance correlations are 
important


Gauge and translation-
invariant with periodic 
boundaries

Need custom ML for physics from the ground up 

         AB-INITIO AI  
 

https://iaifi.org/
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Phiala Shanahan, MIT

Generative flow models
Flow-based models learn a change-of-variables that transforms a known 
distribution to the desired distribution 


Can be made exact through accept/reject!
[Rezende & Mohamed 1505.05770] 
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Phiala Shanahan, MIT

Generative flow models

:H�FKRVH�UHDO�QRQ�YROXPH�SUHVHUYLQJ��UHDO�193�
IORZV�IRU�RXU�ZRUN�
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Flow-based models learn a change-of-variables that transforms a known 
distribution to the desired distribution 


Can be made exact through accept/reject!
[Rezende & Mohamed 1505.05770] 
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Training the model
Target distribution is known up to normalisation  
 

Train to minimise shifted KL divergence:  

 
 
 

Ɣ 'HVLUHG�GLVWULEXWLRQ�LV�NQRZQ�XS�WR�QRUPDOL]DWLRQ�

Ɣ )RU�RXU�DSSOLFDWLRQ��WUDLQ�WR�PLQLPL]H�VKLIWHG�./�GLYHUJHQFH

Ɣ 7KLV�ORVV�DOORZV�VHOI�WUDLQLQJ��VDPSOLQJ�ZLWK�UHVSHFW�WR�PRGHO�GLVWULEXWLRQ�
SѺI�ᶰ��WR�HVWLPDWH�ORVV

7UDLQLQJ�E\�PLQLPL]LQJ�ORVV�IXQFWLRQ

��

VKLIW�UHPRYHV
XQNQRZQ�
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allows self-training: sampling with respect to 
model distribution p̃f(𝜙) to estimate loss
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Ɣ )RU�RXU�DSSOLFDWLRQ��WUDLQ�WR�PLQLPL]H�VKLIWHG�./�GLYHUJHQFH

Ɣ 7KLV�ORVV�DOORZV�VHOI�WUDLQLQJ��VDPSOLQJ�ZLWK�UHVSHFW�WR�PRGHO�GLVWULEXWLRQ�
SѺI�ᶰ��WR�HVWLPDWH�ORVV

7UDLQLQJ�E\�PLQLPL]LQJ�ORVV�IXQFWLRQ

��

VKLIW�UHPRYHV
XQNQRZQ�

QRUPDOL]DWLRQ�=

[Zhang, E, Wang 1809.10188] 

shift removes unknown 
normalisation Ɣ 'HVLUHG�GLVWULEXWLRQ�LV�NQRZQ�XS�WR�QRUPDOL]DWLRQ�

Ɣ )RU�RXU�DSSOLFDWLRQ��WUDLQ�WR�PLQLPL]H�VKLIWHG�./�GLYHUJHQFH

Ɣ 7KLV�ORVV�DOORZV�VHOI�WUDLQLQJ��VDPSOLQJ�ZLWK�UHVSHFW�WR�PRGHO�GLVWULEXWLRQ�
SѺI�ᶰ��WR�HVWLPDWH�ORVV

7UDLQLQJ�E\�PLQLPL]LQJ�ORVV�IXQFWLRQ

��

VKLIW�UHPRYHV
XQNQRZQ�

QRUPDOL]DWLRQ�=
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Exactness via Markov chain
Guarantee exactness of generated distribution by forming a 
Markov chain: accept/reject with Metropolis-Hastings step

0DNLQJ�WKLQJV�H[DFW�YLD�0&0&

Ɣ %RUURZ�LGHD�IURP�VWDQGDUG�DSSURDFK�WR�ODWWLFH�SK\VLFV��0DUNRY�&KDLQ�0RQWH�
&DUOR��0&0&�

Ɣ 8VH�JHQHUDWLYH�PRGHO�IRU�SURSRVDOV�LQ�D�0HWURSROLV�+DVWLQJV�VWHS

��

PRGHO�
SURSRVDOV

0DUNRY�
&KDLQ

䘤

SURSRVDO�LQGHSHQGHQW�
RI�SUHYLRXV�VDPSOH

0DNLQJ�WKLQJV�H[DFW�YLD�0&0&

Ɣ %RUURZ�LGHD�IURP�VWDQGDUG�DSSURDFK�WR�ODWWLFH�SK\VLFV��0DUNRY�&KDLQ�0RQWH�
&DUOR��0&0&�

Ɣ 8VH�JHQHUDWLYH�PRGHO�IRU�SURSRVDOV�LQ�D�0HWURSROLV�+DVWLQJV�VWHS

��

PRGHO�
SURSRVDOV

0DUNRY�
&KDLQ

䘤

SURSRVDO�LQGHSHQGHQW�
RI�SUHYLRXV�VDPSOH

Acceptance 
probability Model dist

True dist
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Fields via flow models2YHUYLHZ�RI�DOJRULWKP

��

3DUDPHWHUL]H�IORZ�XVLQJ�5HDO�
193�FRXSOLQJ�OD\HUV (DFK�OD\HU�FRQWDLQV

DUELWUDU\�QHXUDO�QHWV
V�DQG�W

7UDLQLQJ�VWHS

'UDZ�VDPSOHV�IURP�PRGHO

&RPSXWH�ORVV�IXQFWLRQ

*UDGLHQW�GHVFHQW

0DUNRY�FKDLQ�XVLQJ
VDPSOHV�IURP�PRGHO

'HVLUHG�DFFXUDF\"

6DYH�WUDLQHG�
PRGHO

JHQHUDWLQJ�VDPSOHV�LV�
�HPEDUUDVVLQJO\�SDUDOOHO�

Summary chart: Tej Kanwar
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Application: scalar field theory
First application: scalar lattice field theory

One real number                          per lattice site x (2D lattice) 

Action: kinetic terms and quartic coupling 

5 lattice sizes: L2 = {62, 82, 102, 122, 142} with parameters tuned for 
analysis of critical slowing down  
 

Ɣ 2QH�UHDO�QXPEHU�ᶰ�[��䌞��������SHU�ODWWLFH�VLWH�[���'�ODWWLFH�

Ɣ $FWLRQ�FRQVLVWV�RI�NLQHWLF�WHUPV�DQG�TXDUWLF�FRXSOLQJ

7R\�PRGHO��VFDODU�ᶰ��ODWWLFH�ILHOG�WKHRU\

��

7HVWV�RQ�VFDODU�ODWWLFH�ILHOG�WKHRU\

Ɣ ��ODWWLFH�VL]HV�/�� �^���������������������`�ZLWK�EDUH�SDUDPHWHUV�WXQHG�IRU�
DQDO\VLV�RI�FULWLFDO�VORZLQJ�GRZQ

Ɣ ,QWHJUDWHG�DXWRFRUUHODWLRQ�WLPH�PHDVXUHG�IRU�DOO�REVHUYDEOHV

Ɣ +0&�DQG�ORFDO�0HWURSROLV�FRPSDUHG�DJDLQVW�0/�PHWKRG

��

�(x) 2 (�1,1)
<latexit sha1_base64="vRVXi29qQogInd1mUQ9sxEmb1H0=">AAACA3icbVDLSsNAFL2pr1pfUXe6CRahBS2JCLosunFZwT6gCWUynbRDJ5MwMxFDKLjxV9y4UMStP+HOv3HaZqGtB2bu4Zx7mbnHjxmVyra/jcLS8srqWnG9tLG5tb1j7u61ZJQITJo4YpHo+EgSRjlpKqoY6cSCoNBnpO2Prid++54ISSN+p9KYeCEacBpQjJSWeuaBGw9p5aHqUl451Veg0pNZqfbMsl2zp7AWiZOTMuRo9Mwvtx/hJCRcYYak7Dp2rLwMCUUxI+OSm0gSIzxCA9LVlKOQSC+b7jC2jrXSt4JI6MOVNVV/T2QolDINfd0ZIjWU895E/M/rJiq49DLK40QRjmcPBQmzVGRNArH6VBCsWKoJwoLqv1p4iATCSsdW0iE48ysvktZZzbFrzu15uX6Vx1GEQziCCjhwAXW4gQY0AcMjPMMrvBlPxovxbnzMWgtGPrMPf2B8/gDVU5b+</latexit><latexit sha1_base64="vRVXi29qQogInd1mUQ9sxEmb1H0=">AAACA3icbVDLSsNAFL2pr1pfUXe6CRahBS2JCLosunFZwT6gCWUynbRDJ5MwMxFDKLjxV9y4UMStP+HOv3HaZqGtB2bu4Zx7mbnHjxmVyra/jcLS8srqWnG9tLG5tb1j7u61ZJQITJo4YpHo+EgSRjlpKqoY6cSCoNBnpO2Prid++54ISSN+p9KYeCEacBpQjJSWeuaBGw9p5aHqUl451Veg0pNZqfbMsl2zp7AWiZOTMuRo9Mwvtx/hJCRcYYak7Dp2rLwMCUUxI+OSm0gSIzxCA9LVlKOQSC+b7jC2jrXSt4JI6MOVNVV/T2QolDINfd0ZIjWU895E/M/rJiq49DLK40QRjmcPBQmzVGRNArH6VBCsWKoJwoLqv1p4iATCSsdW0iE48ysvktZZzbFrzu15uX6Vx1GEQziCCjhwAXW4gQY0AcMjPMMrvBlPxovxbnzMWgtGPrMPf2B8/gDVU5b+</latexit><latexit sha1_base64="vRVXi29qQogInd1mUQ9sxEmb1H0=">AAACA3icbVDLSsNAFL2pr1pfUXe6CRahBS2JCLosunFZwT6gCWUynbRDJ5MwMxFDKLjxV9y4UMStP+HOv3HaZqGtB2bu4Zx7mbnHjxmVyra/jcLS8srqWnG9tLG5tb1j7u61ZJQITJo4YpHo+EgSRjlpKqoY6cSCoNBnpO2Prid++54ISSN+p9KYeCEacBpQjJSWeuaBGw9p5aHqUl451Veg0pNZqfbMsl2zp7AWiZOTMuRo9Mwvtx/hJCRcYYak7Dp2rLwMCUUxI+OSm0gSIzxCA9LVlKOQSC+b7jC2jrXSt4JI6MOVNVV/T2QolDINfd0ZIjWU895E/M/rJiq49DLK40QRjmcPBQmzVGRNArH6VBCsWKoJwoLqv1p4iATCSsdW0iE48ysvktZZzbFrzu15uX6Vx1GEQziCCjhwAXW4gQY0AcMjPMMrvBlPxovxbnzMWgtGPrMPf2B8/gDVU5b+</latexit><latexit sha1_base64="vRVXi29qQogInd1mUQ9sxEmb1H0=">AAACA3icbVDLSsNAFL2pr1pfUXe6CRahBS2JCLosunFZwT6gCWUynbRDJ5MwMxFDKLjxV9y4UMStP+HOv3HaZqGtB2bu4Zx7mbnHjxmVyra/jcLS8srqWnG9tLG5tb1j7u61ZJQITJo4YpHo+EgSRjlpKqoY6cSCoNBnpO2Prid++54ISSN+p9KYeCEacBpQjJSWeuaBGw9p5aHqUl451Veg0pNZqfbMsl2zp7AWiZOTMuRo9Mwvtx/hJCRcYYak7Dp2rLwMCUUxI+OSm0gSIzxCA9LVlKOQSC+b7jC2jrXSt4JI6MOVNVV/T2QolDINfd0ZIjWU895E/M/rJiq49DLK40QRjmcPBQmzVGRNArH6VBCsWKoJwoLqv1p4iATCSsdW0iE48ysvktZZzbFrzu15uX6Vx1GEQziCCjhwAXW4gQY0AcMjPMMrvBlPxovxbnzMWgtGPrMPf2B8/gDVU5b+</latexit>
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5HDO�193�FRXSOLQJ�OD\HU

Ɣ $IILQH�WUDQVIRUPDWLRQ�RI�KDOI�WKH�YDULDEOHV�
VFDOLQJ�E\�H[S�V���WUDQVODWLRQ�E\�W

Ɣ V�DQG�W�DUH�QHXUDO�QHWZRUNV�GHSHQGLQJ
RQ�XQWUDQVIRUPHG�YDULDEOHV�RQO\

Ɣ 6LPSOH�LQYHUVH�DQG�-DFRELDQ

��

$SSOLFDWLRQ�RI�JL
��

Phiala Shanahan, MIT

Choose real non-volume preserving flows:

Affine transformation of half of the variables: 
scaling by exp(s)
translation by t 
s and t arbitrary neural networks depending on 
untransformed variables only 

Simple inverse and Jacobian 

[Dinh et al. 1605.08803] 
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Phiala Shanahan, MIT

Application: scalar field theory

Prior distribution chosen to be uncorrelated 
Gaussian: 

Real non-volume-preserving (NVP) couplings
8-12 Real NVP coupling layers 
Alternating checkerboard pattern for variable split 
NNs with 2-6 fully connected layers with 100-1024 
hidden units

Train using shifted KL loss with Adam optimizer
Stopping criterion: fixed acceptance rate in Metropolis-
Hastings MCMC 

Ɣ 3ULRU�GLVWULEXWLRQ�FKRVHQ�WR�EH�XQFRUUHODWHG�*DXVVLDQ�
L�H��IRU�HDFK�VLWH�[�

Ɣ 5HDO�193�PRGHO�
ż �����5HDO�193�FRXSOLQJ�OD\HUV
ż $OWHUQDWLQJ�FKHFNHUERDUG�SDWWHUQ�IRU�YDULDEOH�VSOLW
ż ����IXOO\�FRQQHFWHG�OD\HUV�ZLWK����������KLGGHQ�XQLWV

Ɣ 7UDLQHG�XVLQJ�VKLIWHG�./�ORVV�ZLWK�$GDP�RSWLPL]HU
ż 7DUJHW�IL[HG�DFFHSWDQFH�UDWH�LQ�0HWURSROLV�+DVWLQJV�0&0&

0/�PHWKRG�IRU�VFDODU�ODWWLFH�ILHOG�WKHRU\

��

�
�
�

Ɣ 3ULRU�GLVWULEXWLRQ�FKRVHQ�WR�EH�XQFRUUHODWHG�*DXVVLDQ�
L�H��IRU�HDFK�VLWH�[�

Ɣ 5HDO�193�PRGHO�
ż �����5HDO�193�FRXSOLQJ�OD\HUV
ż $OWHUQDWLQJ�FKHFNHUERDUG�SDWWHUQ�IRU�YDULDEOH�VSOLW
ż ����IXOO\�FRQQHFWHG�OD\HUV�ZLWK����������KLGGHQ�XQLWV

Ɣ 7UDLQHG�XVLQJ�VKLIWHG�./�ORVV�ZLWK�$GDP�RSWLPL]HU
ż 7DUJHW�IL[HG�DFFHSWDQFH�UDWH�LQ�0HWURSROLV�+DVWLQJV�0&0&

0/�PHWKRG�IRU�VFDODU�ODWWLFH�ILHOG�WKHRU\

��

�
�
�

Ɣ3ULRU�GLVWULEXWLRQ�FKRVHQ�WR�EH�XQFRUUHODWHG�*DXVVLDQ�
L�H��IRU�HDFK�VLWH�[�

Ɣ5HDO�193�PRGHO�
ż�����5HDO�193�FRXSOLQJ�OD\HUV
ż$OWHUQDWLQJ�FKHFNHUERDUG�SDWWHUQ�IRU�YDULDEOH�VSOLW
ż����IXOO\�FRQQHFWHG�OD\HUV�ZLWK����������KLGGHQ�XQLWV

Ɣ7UDLQHG�XVLQJ�VKLIWHG�./�ORVV�ZLWK�$GDP�RSWLPL]HU
ż7DUJHW�IL[HG�DFFHSWDQFH�UDWH�LQ�0HWURSROLV�+DVWLQJV�0&0&

0/�PHWKRG�IRU�VFDODU�ODWWLFH�ILHOG�WKHRU\

��

�
�
�
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(b) Local Metropolis ensembles
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(c) Flow-based MCMC ensembles

FIG. 7: Scaling of integrated autocorrelation time with respect to lattice size for HMC, local Metropolis, and flow-based MCMC.
In (c) the upper sets of points in blue correspond to models trained to a mean acceptance rate of 50%, while the lower sets
of points in green correspond to models trained to a mean acceptance rate of 70%. Dashed red lines display power law fits to
L = {10, 12, 14} with labels Lz specifying the scaling. The HMC and local Metropolis methods demonstrate power-law growth
of ⌧int, while ⌧int for the flow-based MCMC is consistent with a constant in L and decreases as mean acceptance rate increases.
Dot-dashed blue and green lines for the flow-based ensembles display lower bounds in terms of mean acceptance rate based on
Eq. (18). Error bars indicate 68% confidence intervals estimated by bootstrap resampling and error propagation.

is a strong correlation between the mean acceptance rate
and integrated autocorrelation time for models trained
using a shifted KL loss. This is further confirmed by the
similarity of the rejection run histograms across lattice
sizes for flow-based MCMC, as shown in Figure 2.

D. Training costs

While CSD in the sampling step for the flow-based
MCMC is eliminated, training the generative model in-
troduces an additional up-front cost, as discussed in Sec-
tion IID. Since this cost is amortized over the ensem-
ble, this approach will naturally be computationally ad-
vantageous in the limit of generating a large number of
samples. For a finite target ensemble size, the poten-
tial acceleration o↵ered depends crucially on the training
time.

In this work, all models were trained using one to two
GPU-weeks, with the larger lattices incurring the most
computational cost. For the simple fully-connected archi-
tecture used in this work, the scaling of both the sampling
and training time is controlled by dense matrix-vector
multiplications which require O(V 2) floating point op-
erations each. The number of epochs used to train the
largest lattice was also roughly 10⇥ that of the smallest
lattice. This asymptotic scaling is a result of the simple
model architecture used in this proof-of-principle study.
For related methods applied to image generation, using
convolutional neural networks and a multi-scale archi-
tecture reduced training and sampling costs significantly
and improved scaling to O(V ) [39]. There are physical
grounds to expect these tools to apply equally well to

the present application. Convolutional networks use only
local information to update values in each layer, exploit-
ing locality in the system, and use identical weights for
each point on the lattice, manifestly preserving trans-
lational invariance. A multi-scale architecture learns
coarse-grained distributions and fine-graining procedures
in separate layers; this is an e↵ective division of tasks
for renormalizable quantum field theories, where simple
coarse-grained descriptions are expected to arise. Gen-
erative models, and in particular flow-based models, are
also rapidly evolving towards more e�cient representa-
tion capacity. Complex coupling layers have been imple-
mented [39, 52], as have generalized convolutions [53, 54]
and transformations with continuous dynamics that are
not dependent on restricted coupling layers [55]. These
developments allow models to better capture a distribu-
tion within a given number of training steps.

For complex applications, it is also critical that larger
models with many coupling layers can be trained with-
out exceeding memory bounds. The algorithm proposed
here can be trained with constant memory cost as the
number of layers is increased [56], alleviating the stor-
age limitations that can arise in gradient-based optimiza-
tion. Memory costs can be further reduced by distribut-
ing samples within each training batch across many ma-
chines.

Finally, typical applications seek to produce ensembles
at many di↵erent choices of parameters, and often require
parameter tuning. Training costs can therefore by amor-
tized further; models trained with respect to an action
at a given set of parameter values can either be used to
initialize training or as a prior distribution for models
targeting that action at nearby parameter values.

No slow-down

Phiala Shanahan, MIT

Application: scalar field theory

Success:  Critical slowing down is eliminated
Cost:      Up-front training of the model

First application: scalar lattice field theory

Conventional approaches slow down

(Cost) (Cost) (Cost)
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Phiala Shanahan, MIT

From toy models to QCD
Target application: Lattice QCD for nuclear physics

Scale number of dimensions → 4D
Scale number of degrees of freedom → 483 x 96
Methods for gauge theories

1.    
2.
3.    
  [arXiv:2002.02428, PRL 125, 121601 (2020), 2008.05456]

Aurora21 Early Science Project

)XWXUH�'LUHFWLRQV����

Ɣ 2XU�ZRUN�VR�IDU�KDV�RQO\�EHHQ�WZR�GLPHQVLRQDO�ODWWLFHV

Ɣ &RVWV�VFDOH�XS��EXW�QR�WKHRUHWLFDO�REVWDFOH�WR�KLJKHU�GLPHQVLRQV
ż 3UHOLPLQDU\�UHVXOWV�IRU�ᶰ��LQGLFDWHV��G�HDVLO\�DFFHVVLEOH
ż 1HHG�WR�UHVROYH�FRPSXWDWLRQDO�ERWWOHQHFN�IRU��G

��
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Incorporating symmetries
Gauge field theories

• Field configurations represented by  
links             encoded as matrices


• e.g., for Quantum Chromodynamics,  
SU(3) matrices (3x3 complex matrices        
with                         ,                       )


• Group-valued fields live not on real line 
but on compact manifolds


• Action is invariant under group transformations 
on gauge fields

New simulation strategies 
for lattice gauge theory
Michael G. Endres Lattice 2016

Multiscale Monte Carlo equilibration: Pure Yang-Mills theory
Michael G. Endres, Richard C. Brower, William Detmold, Kostas Orginos, Andrew V. Pochinsky

Multigrid  ideas for HMC
Very important and difficult problem
Major focus of US Exascale Software
project
(see Poster by Mike Endres)
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ABSTRACT

Nuclear and particle physicists seek to understand the structure of matter at the
smallest scales through numerical simulations of lattice Quantum Chromodynam-
ics (LQCD) performed on the largest supercomputers available. Multi-scale tech-
niques have the potential to dramatically reduce the computational cost of such
simulations, if a challenging parameter regression problem matching physics at
different resolution scales can be solved. Simple neural networks applied to this
task fail because of the dramatic inverted data hierarchy that this problem dis-
plays, with orders of magnitude fewer samples typically available than degrees
of freedom per sample. Symmetry-aware networks that respect the complicated
invariances of the underlying physics, however, provide an efficient and practical
solution. Further efforts to incorporate invariances and constraints that are typical
of physics problems into neural networks and other machine learning algorithms
have potential to dramatically impact studies of systems in nuclear, particle, con-
densed matter, and statistical physics.

1 DATA

LQCD is a Markov Chain Monte-Carlo (MCMC) importance sampling method based on the gen-
eration of ensembles of configurations of the underlying physical degrees of freedom (quark and
gluon fields) Rothe (1992). Configurations are represented as sets of links Uµ(x) between sites on
four-dimensional hypercubic space-time lattices (x denotes the spacetime coordinates of the origin
site and µ the direction of the link). Each link can be encoded as an SU(3) matrix (a 3⇥ 3 complex
matrix M with M�1 = M† and det[M ] = 1, where M† = (M⇤)T is the Hermitian conjugate),
and a configuration is encoded by O(107) links, i.e., O(109) floating point or double precision
numbers for a typical state-of-the-art calculation. Since these configurations sample the probability
distribution corresponding to the LQCD action (a function defining the quark and gluon dynamics),
weighted ensemble averages determine physical observables of interest; calculations typically use
ensembles of O(103) configurations.

The parameter regression task studied here is the determination of the LQCD action parameters, �
and m, corresponding to a given ensemble of configurations. Because of the significantly inverted
data hierarchy of LQCD datasets, this is a challenging problem. However, the physics encoded by
an ensemble of configurations is invariant under a number of complex symmetries, namely discrete
space-time translations and rotations on the hypercubic space, as well as ‘gauge transformations’.
The latter are continuous Lie group transformations at each space-time point on the lattice, i.e.,
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of physics problems into neural networks and other machine learning algorithms
have potential to dramatically impact studies of systems in nuclear, particle, con-
densed matter, and statistical physics.

1 DATA

LQCD is a Markov Chain Monte-Carlo (MCMC) importance sampling method based on the gen-
eration of ensembles of configurations of the underlying physical degrees of freedom (quark and
gluon fields) Rothe (1992). Configurations are represented as sets of links Uµ(x) between sites on
four-dimensional hypercubic space-time lattices (x denotes the spacetime coordinates of the origin
site and µ the direction of the link). Each link can be encoded as an SU(3) matrix (a 3⇥ 3 complex
matrix M with M�1 = M† and det[M ] = 1, where M† = (M⇤)T is the Hermitian conjugate),
and a configuration is encoded by O(107) links, i.e., O(109) floating point or double precision
numbers for a typical state-of-the-art calculation. Since these configurations sample the probability
distribution corresponding to the LQCD action (a function defining the quark and gluon dynamics),
weighted ensemble averages determine physical observables of interest; calculations typically use
ensembles of O(103) configurations.

The parameter regression task studied here is the determination of the LQCD action parameters, �
and m, corresponding to a given ensemble of configurations. Because of the significantly inverted
data hierarchy of LQCD datasets, this is a challenging problem. However, the physics encoded by
an ensemble of configurations is invariant under a number of complex symmetries, namely discrete
space-time translations and rotations on the hypercubic space, as well as ‘gauge transformations’.
The latter are continuous Lie group transformations at each space-time point on the lattice, i.e.,
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ABSTRACT

Nuclear and particle physicists seek to understand the structure of matter at the
smallest scales through numerical simulations of lattice Quantum Chromodynam-
ics (LQCD) performed on the largest supercomputers available. Multi-scale tech-
niques have the potential to dramatically reduce the computational cost of such
simulations, if a challenging parameter regression problem matching physics at
different resolution scales can be solved. Simple neural networks applied to this
task fail because of the dramatic inverted data hierarchy that this problem dis-
plays, with orders of magnitude fewer samples typically available than degrees
of freedom per sample. Symmetry-aware networks that respect the complicated
invariances of the underlying physics, however, provide an efficient and practical
solution. Further efforts to incorporate invariances and constraints that are typical
of physics problems into neural networks and other machine learning algorithms
have potential to dramatically impact studies of systems in nuclear, particle, con-
densed matter, and statistical physics.
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gluon fields) Rothe (1992). Configurations are represented as sets of links Uµ(x) between sites on
four-dimensional hypercubic space-time lattices (x denotes the spacetime coordinates of the origin
site and µ the direction of the link). Each link can be encoded as an SU(3) matrix (a 3⇥ 3 complex
matrix M with M�1 = M† and det[M ] = 1, where M† = (M⇤)T is the Hermitian conjugate),
and a configuration is encoded by O(107) links, i.e., O(109) floating point or double precision
numbers for a typical state-of-the-art calculation. Since these configurations sample the probability
distribution corresponding to the LQCD action (a function defining the quark and gluon dynamics),
weighted ensemble averages determine physical observables of interest; calculations typically use
ensembles of O(103) configurations.

The parameter regression task studied here is the determination of the LQCD action parameters, �
and m, corresponding to a given ensemble of configurations. Because of the significantly inverted
data hierarchy of LQCD datasets, this is a challenging problem. However, the physics encoded by
an ensemble of configurations is invariant under a number of complex symmetries, namely discrete
space-time translations and rotations on the hypercubic space, as well as ‘gauge transformations’.
The latter are continuous Lie group transformations at each space-time point on the lattice, i.e.,

1

M
<latexit sha1_base64="dUsH+zrMWrX3s/zoldid+dmUmUM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRixehBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvp357SdUmsfywUwS9CM6lDzkjBorNe775Ypbdecgq8TLSQVy1Pvlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtC6qnlv1GpeV2k0eRxFO4BTOwYMrqMEd1KEJDBCe4RXenEfnxXl3PhatBSefOYY/cD5/AKUNjNE=</latexit><latexit sha1_base64="dUsH+zrMWrX3s/zoldid+dmUmUM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRixehBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvp357SdUmsfywUwS9CM6lDzkjBorNe775Ypbdecgq8TLSQVy1Pvlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtC6qnlv1GpeV2k0eRxFO4BTOwYMrqMEd1KEJDBCe4RXenEfnxXl3PhatBSefOYY/cD5/AKUNjNE=</latexit><latexit sha1_base64="dUsH+zrMWrX3s/zoldid+dmUmUM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRixehBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvp357SdUmsfywUwS9CM6lDzkjBorNe775Ypbdecgq8TLSQVy1Pvlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtC6qnlv1GpeV2k0eRxFO4BTOwYMrqMEd1KEJDBCe4RXenEfnxXl3PhatBSefOYY/cD5/AKUNjNE=</latexit><latexit sha1_base64="dUsH+zrMWrX3s/zoldid+dmUmUM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRixehBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvp357SdUmsfywUwS9CM6lDzkjBorNe775Ypbdecgq8TLSQVy1Pvlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtC6qnlv1GpeV2k0eRxFO4BTOwYMrqMEd1KEJDBCe4RXenEfnxXl3PhatBSefOYY/cD5/AKUNjNE=</latexit>

det[M ] = 1
<latexit sha1_base64="w/qmzusne+IY7wkvL4Umqe/Csr0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6EUoevEiVLAfkIay2UzapZtN3N0IJfRPePGgiFf/jjf/jds2B219MPB4b4aZeUHKmdKO822VVlbX1jfKm5Wt7Z3dver+QVslmaTYoglPZDcgCjkT2NJMc+ymEkkccOwEo5up33lCqVgiHvQ4RT8mA8EiRok2UjdE7d35V26/WnPqzgz2MnELUoMCzX71qxcmNItRaMqJUp7rpNrPidSMcpxUepnClNARGaBnqCAxKj+f3TuxT4wS2lEiTQltz9TfEzmJlRrHgemMiR6qRW8q/ud5mY4u/ZyJNNMo6HxRlHFbJ/b0eTtkEqnmY0MIlczcatMhkYRqE1HFhOAuvrxM2md116m79+e1xnURRxmO4BhOwYULaMAtNKEFFDg8wyu8WY/Wi/VufcxbS1Yxcwh/YH3+AFByj3o=</latexit><latexit sha1_base64="w/qmzusne+IY7wkvL4Umqe/Csr0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6EUoevEiVLAfkIay2UzapZtN3N0IJfRPePGgiFf/jjf/jds2B219MPB4b4aZeUHKmdKO822VVlbX1jfKm5Wt7Z3dver+QVslmaTYoglPZDcgCjkT2NJMc+ymEkkccOwEo5up33lCqVgiHvQ4RT8mA8EiRok2UjdE7d35V26/WnPqzgz2MnELUoMCzX71qxcmNItRaMqJUp7rpNrPidSMcpxUepnClNARGaBnqCAxKj+f3TuxT4wS2lEiTQltz9TfEzmJlRrHgemMiR6qRW8q/ud5mY4u/ZyJNNMo6HxRlHFbJ/b0eTtkEqnmY0MIlczcatMhkYRqE1HFhOAuvrxM2md116m79+e1xnURRxmO4BhOwYULaMAtNKEFFDg8wyu8WY/Wi/VufcxbS1Yxcwh/YH3+AFByj3o=</latexit><latexit sha1_base64="w/qmzusne+IY7wkvL4Umqe/Csr0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6EUoevEiVLAfkIay2UzapZtN3N0IJfRPePGgiFf/jjf/jds2B219MPB4b4aZeUHKmdKO822VVlbX1jfKm5Wt7Z3dver+QVslmaTYoglPZDcgCjkT2NJMc+ymEkkccOwEo5up33lCqVgiHvQ4RT8mA8EiRok2UjdE7d35V26/WnPqzgz2MnELUoMCzX71qxcmNItRaMqJUp7rpNrPidSMcpxUepnClNARGaBnqCAxKj+f3TuxT4wS2lEiTQltz9TfEzmJlRrHgemMiR6qRW8q/ud5mY4u/ZyJNNMo6HxRlHFbJ/b0eTtkEqnmY0MIlczcatMhkYRqE1HFhOAuvrxM2md116m79+e1xnURRxmO4BhOwYULaMAtNKEFFDg8wyu8WY/Wi/VufcxbS1Yxcwh/YH3+AFByj3o=</latexit><latexit sha1_base64="w/qmzusne+IY7wkvL4Umqe/Csr0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6EUoevEiVLAfkIay2UzapZtN3N0IJfRPePGgiFf/jjf/jds2B219MPB4b4aZeUHKmdKO822VVlbX1jfKm5Wt7Z3dver+QVslmaTYoglPZDcgCjkT2NJMc+ymEkkccOwEo5up33lCqVgiHvQ4RT8mA8EiRok2UjdE7d35V26/WnPqzgz2MnELUoMCzX71qxcmNItRaMqJUp7rpNrPidSMcpxUepnClNARGaBnqCAxKj+f3TuxT4wS2lEiTQltz9TfEzmJlRrHgemMiR6qRW8q/ud5mY4u/ZyJNNMo6HxRlHFbJ/b0eTtkEqnmY0MIlczcatMhkYRqE1HFhOAuvrxM2md116m79+e1xnURRxmO4BhOwYULaMAtNKEFFDg8wyu8WY/Wi/VufcxbS1Yxcwh/YH3+AFByj3o=</latexit>

M�1 = M†
<latexit sha1_base64="DBmevwbZ9rHPSpIPtNby7m3lkRE=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBiyURQS9C0YuXQgX7AW1aNptJu3SzCbubQgn9J148KOLVf+LNf+O2zUFbHww83pthZp6fcKa043xbhbX1jc2t4nZpZ3dv/8A+PGqqOJUUGjTmsWz7RAFnAhqaaQ7tRAKJfA4tf3Q/81tjkIrF4klPEvAiMhAsZJRoI/Vtu9bLLtzpba3XDchgALJvl52KMwdeJW5OyihHvW9/dYOYphEITTlRquM6ifYyIjWjHKalbqogIXREBtAxVJAIlJfNL5/iM6MEOIylKaHxXP09kZFIqUnkm86I6KFa9mbif14n1eGNlzGRpBoEXSwKU451jGcx4IBJoJpPDCFUMnMrpkMiCdUmrJIJwV1+eZU0LyuuU3Efr8rVuzyOIjpBp+gcuegaVdEDqqMGomiMntErerMy68V6tz4WrQUrnzlGf2B9/gCYYpL6</latexit><latexit sha1_base64="DBmevwbZ9rHPSpIPtNby7m3lkRE=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBiyURQS9C0YuXQgX7AW1aNptJu3SzCbubQgn9J148KOLVf+LNf+O2zUFbHww83pthZp6fcKa043xbhbX1jc2t4nZpZ3dv/8A+PGqqOJUUGjTmsWz7RAFnAhqaaQ7tRAKJfA4tf3Q/81tjkIrF4klPEvAiMhAsZJRoI/Vtu9bLLtzpba3XDchgALJvl52KMwdeJW5OyihHvW9/dYOYphEITTlRquM6ifYyIjWjHKalbqogIXREBtAxVJAIlJfNL5/iM6MEOIylKaHxXP09kZFIqUnkm86I6KFa9mbif14n1eGNlzGRpBoEXSwKU451jGcx4IBJoJpPDCFUMnMrpkMiCdUmrJIJwV1+eZU0LyuuU3Efr8rVuzyOIjpBp+gcuegaVdEDqqMGomiMntErerMy68V6tz4WrQUrnzlGf2B9/gCYYpL6</latexit><latexit sha1_base64="DBmevwbZ9rHPSpIPtNby7m3lkRE=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBiyURQS9C0YuXQgX7AW1aNptJu3SzCbubQgn9J148KOLVf+LNf+O2zUFbHww83pthZp6fcKa043xbhbX1jc2t4nZpZ3dv/8A+PGqqOJUUGjTmsWz7RAFnAhqaaQ7tRAKJfA4tf3Q/81tjkIrF4klPEvAiMhAsZJRoI/Vtu9bLLtzpba3XDchgALJvl52KMwdeJW5OyihHvW9/dYOYphEITTlRquM6ifYyIjWjHKalbqogIXREBtAxVJAIlJfNL5/iM6MEOIylKaHxXP09kZFIqUnkm86I6KFa9mbif14n1eGNlzGRpBoEXSwKU451jGcx4IBJoJpPDCFUMnMrpkMiCdUmrJIJwV1+eZU0LyuuU3Efr8rVuzyOIjpBp+gcuegaVdEDqqMGomiMntErerMy68V6tz4WrQUrnzlGf2B9/gCYYpL6</latexit><latexit sha1_base64="DBmevwbZ9rHPSpIPtNby7m3lkRE=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBiyURQS9C0YuXQgX7AW1aNptJu3SzCbubQgn9J148KOLVf+LNf+O2zUFbHww83pthZp6fcKa043xbhbX1jc2t4nZpZ3dv/8A+PGqqOJUUGjTmsWz7RAFnAhqaaQ7tRAKJfA4tf3Q/81tjkIrF4klPEvAiMhAsZJRoI/Vtu9bLLtzpba3XDchgALJvl52KMwdeJW5OyihHvW9/dYOYphEITTlRquM6ifYyIjWjHKalbqogIXREBtAxVJAIlJfNL5/iM6MEOIylKaHxXP09kZFIqUnkm86I6KFa9mbif14n1eGNlzGRpBoEXSwKU451jGcx4IBJoJpPDCFUMnMrpkMiCdUmrJIJwV1+eZU0LyuuU3Efr8rVuzyOIjpBp+gcuegaVdEDqqMGomiMntErerMy68V6tz4WrQUrnzlGf2B9/gCYYpL6</latexit>

Flows on compact, connected manifolds

Incorporate symmetries: gauge-equivariant flows

1.    

2. 
[2008.05456 (2020), PRL 125, 121601 (2020), 2002.02428 (2020)]

39



Flows on spheres and tori

Phiala Shanahan, MIT

Previously:  Real non-volume preserving flows
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Need:        Flows on compact, connected manifolds 
                e.g., circles, tori, spheres
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(i.e. points with non-invertible Jacobian), which may result
in numerical instabilities during training. Another approach,
proposed by Falorsi et al. (2019) for the case where N is a
Lie group, is to apply the usual Euclidean flows on the Lie
algebra of N (i.e. the tangent space at the identity element),
and then use the exponential map to project the Lie algebra
onto N . However, this approach results in models that are
hard to compose with other maps on the manifold.

Our main contribution is to propose a new set of expres-
sive normalizing flows for the case where M and N are
compact and connected differentiable manifolds. Specif-
ically, we construct flows on the 1-dimensional circle S1,
the D-dimensional torus TD, the D-dimensional sphere SD,
and arbitrary products of these spaces. The proposed flows
can be made arbitrarily flexible, and avoid the numerical in-
stabilities of previous approaches. Our flows are applicable
when we already know the manifold structure of the data,
such as when the data is a set of angles or latent variables
with a prescribed topology. We empirically demonstrate the
proposed flows on synthetic inference problems designed to
test the ability to model sharp and multi-modal densities.

2. Methods
We will begin by constructing expressive and numerically
stable flows on the circle S1. Then, we will use these flows
as building blocks to construct flows on the torus TD and
the sphere SD. The torus TD can be written as a Cartesian
product of D copies of S1, which will allow us to build flows
on TD autoregressively. The sphere SD can be written as a
transformation of the cylinder SD�1

⇥ [�1, 1], which will
allow us to build flows on SD recursively, using flows on
S1 and [�1, 1] as building blocks. By combining these con-
structions, we can build a wide range of compact connected
manifolds of interest to fundamental and applied sciences.

2.1. Flows on the Circle S1

Depending on what is most convenient, we will
sometimes view S1 as embedded in R2, that is�
(x1, x2) 2 R2

;x2
1 + x2

2 = 1
 

, or parameterize it by a co-
ordinate ✓ 2 [0, 2⇡], identifying 0 and 2⇡ as the same point.
In this section, we describe how to construct a diffeomor-
phism f that maps the circle to itself.

Since 0 and 2⇡ are identified as the same point, the trans-
formation f : [0, 2⇡] ! [0, 2⇡] must satisfy appropriate
boundary conditions to be a valid diffeomorphism on the
circle. The following conditions are sufficient:

f(0) = 0, (3)
f(2⇡) = 2⇡, (4)
rf(✓) > 0, (5)

rf(✓)|✓=0 = rf(✓)|✓=2⇡. (6)

The first two conditions ensure that 0 and 2⇡ are mapped to
the same point on the circle. The third condition ensures that
the transformation is strictly monotonic, and thus invertible.
Finally, the fourth condition ensures that the Jacobians agree
at 0 and 2⇡, thus the probability density is continuous.

A restriction in the above conditions is that 0 and 2⇡ are
fixed points. Nonetheless, this restriction can be easily over-
come by composing a transformation f satisfying these
conditions with a phase translation ✓ 7! (✓ + �) mod 2⇡,
where � can be a learnable parameter. Such a phase trans-
lation is volume-preserving, so it does not incur a volume
correction in the calculation of the probability density.

Given a collection {fi}i=1,...,K of transformations satisfy-
ing the above conditions, we can combine them into a more
complex transformation f that also meets these conditions.
One such mechanism for combining transformations is func-
tion composition f = fK � · · · � f1, which can easily be
seen to satisfy Equations (3) to (6). Alternatively, we can
combine transformations using convex combinations, as any
convex combination f(✓) =

P
i ⇢ifi(✓) where ⇢i � 0 andP

i ⇢i = 1 also satisfies Equations (3) to (6). By alternating
between function compositions and convex combinations,
we can construct expressive flows on S1 from simple ones.

Next, we describe three circle diffeomorphisms that by con-
struction satisfy the above conditions: Möbius transforma-

tions, circular splines, and non-compact projections.

2.1.1. MÖBIUS TRANSFORMATION

Möbius transformations have previously been used to de-
fine distributions on the circle and sphere (see e.g. Kato
& McCullagh, 2015; Wang, 2013). We will first describe
the Möbius transformation in the general case of the sphere
SD, and then show how to adapt it, when D = 1, to create
expressive flows on the circle.

!

z
0

g!(z)

h!(z)

Consider SD, the unit sphere in
RD+1. Let ! be a point in RD+1

with norm strictly less than 1. For
any point z in SD, draw a straight
line between z and ! (as shown on
the left). This line intersects SD at
exactly two distinct points. One is
z. Call the other one g!(z).

Definition 1. We define the Möbius transformation h!(z)
of z with centre ! to be �g!(z).

An explicit formula for h! is given by

h!(z) =
1� k!k2

kz � !k2
(z � !)� !. (7)

When ! = 0, the transformation h! is just the identity.
When D = 2, these transformations are related to the more
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(i.e. points with non-invertible Jacobian), which may result
in numerical instabilities during training. Another approach,
proposed by Falorsi et al. (2019) for the case where N is a
Lie group, is to apply the usual Euclidean flows on the Lie
algebra of N (i.e. the tangent space at the identity element),
and then use the exponential map to project the Lie algebra
onto N . However, this approach results in models that are
hard to compose with other maps on the manifold.

Our main contribution is to propose a new set of expres-
sive normalizing flows for the case where M and N are
compact and connected differentiable manifolds. Specif-
ically, we construct flows on the 1-dimensional circle S1,
the D-dimensional torus TD, the D-dimensional sphere SD,
and arbitrary products of these spaces. The proposed flows
can be made arbitrarily flexible, and avoid the numerical in-
stabilities of previous approaches. Our flows are applicable
when we already know the manifold structure of the data,
such as when the data is a set of angles or latent variables
with a prescribed topology. We empirically demonstrate the
proposed flows on synthetic inference problems designed to
test the ability to model sharp and multi-modal densities.

2. Methods
We will begin by constructing expressive and numerically
stable flows on the circle S1. Then, we will use these flows
as building blocks to construct flows on the torus TD and
the sphere SD. The torus TD can be written as a Cartesian
product of D copies of S1, which will allow us to build flows
on TD autoregressively. The sphere SD can be written as a
transformation of the cylinder SD�1

⇥ [�1, 1], which will
allow us to build flows on SD recursively, using flows on
S1 and [�1, 1] as building blocks. By combining these con-
structions, we can build a wide range of compact connected
manifolds of interest to fundamental and applied sciences.

2.1. Flows on the Circle S1

Depending on what is most convenient, we will
sometimes view S1 as embedded in R2, that is�
(x1, x2) 2 R2

;x2
1 + x2

2 = 1
 

, or parameterize it by a co-
ordinate ✓ 2 [0, 2⇡], identifying 0 and 2⇡ as the same point.
In this section, we describe how to construct a diffeomor-
phism f that maps the circle to itself.

Since 0 and 2⇡ are identified as the same point, the trans-
formation f : [0, 2⇡] ! [0, 2⇡] must satisfy appropriate
boundary conditions to be a valid diffeomorphism on the
circle. The following conditions are sufficient:

f(0) = 0, (3)
f(2⇡) = 2⇡, (4)
rf(✓) > 0, (5)

rf(✓)|✓=0 = rf(✓)|✓=2⇡. (6)

The first two conditions ensure that 0 and 2⇡ are mapped to
the same point on the circle. The third condition ensures that
the transformation is strictly monotonic, and thus invertible.
Finally, the fourth condition ensures that the Jacobians agree
at 0 and 2⇡, thus the probability density is continuous.

A restriction in the above conditions is that 0 and 2⇡ are
fixed points. Nonetheless, this restriction can be easily over-
come by composing a transformation f satisfying these
conditions with a phase translation ✓ 7! (✓ + �) mod 2⇡,
where � can be a learnable parameter. Such a phase trans-
lation is volume-preserving, so it does not incur a volume
correction in the calculation of the probability density.

Given a collection {fi}i=1,...,K of transformations satisfy-
ing the above conditions, we can combine them into a more
complex transformation f that also meets these conditions.
One such mechanism for combining transformations is func-
tion composition f = fK � · · · � f1, which can easily be
seen to satisfy Equations (3) to (6). Alternatively, we can
combine transformations using convex combinations, as any
convex combination f(✓) =

P
i ⇢ifi(✓) where ⇢i � 0 andP

i ⇢i = 1 also satisfies Equations (3) to (6). By alternating
between function compositions and convex combinations,
we can construct expressive flows on S1 from simple ones.

Next, we describe three circle diffeomorphisms that by con-
struction satisfy the above conditions: Möbius transforma-

tions, circular splines, and non-compact projections.

2.1.1. MÖBIUS TRANSFORMATION

Möbius transformations have previously been used to de-
fine distributions on the circle and sphere (see e.g. Kato
& McCullagh, 2015; Wang, 2013). We will first describe
the Möbius transformation in the general case of the sphere
SD, and then show how to adapt it, when D = 1, to create
expressive flows on the circle.
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Consider SD, the unit sphere in
RD+1. Let ! be a point in RD+1

with norm strictly less than 1. For
any point z in SD, draw a straight
line between z and ! (as shown on
the left). This line intersects SD at
exactly two distinct points. One is
z. Call the other one g!(z).

Definition 1. We define the Möbius transformation h!(z)
of z with centre ! to be �g!(z).

An explicit formula for h! is given by
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(i.e. points with non-invertible Jacobian), which may result
in numerical instabilities during training. Another approach,
proposed by Falorsi et al. (2019) for the case where N is a
Lie group, is to apply the usual Euclidean flows on the Lie
algebra of N (i.e. the tangent space at the identity element),
and then use the exponential map to project the Lie algebra
onto N . However, this approach results in models that are
hard to compose with other maps on the manifold.

Our main contribution is to propose a new set of expres-
sive normalizing flows for the case where M and N are
compact and connected differentiable manifolds. Specif-
ically, we construct flows on the 1-dimensional circle S1,
the D-dimensional torus TD, the D-dimensional sphere SD,
and arbitrary products of these spaces. The proposed flows
can be made arbitrarily flexible, and avoid the numerical in-
stabilities of previous approaches. Our flows are applicable
when we already know the manifold structure of the data,
such as when the data is a set of angles or latent variables
with a prescribed topology. We empirically demonstrate the
proposed flows on synthetic inference problems designed to
test the ability to model sharp and multi-modal densities.

2. Methods
We will begin by constructing expressive and numerically
stable flows on the circle S1. Then, we will use these flows
as building blocks to construct flows on the torus TD and
the sphere SD. The torus TD can be written as a Cartesian
product of D copies of S1, which will allow us to build flows
on TD autoregressively. The sphere SD can be written as a
transformation of the cylinder SD�1

⇥ [�1, 1], which will
allow us to build flows on SD recursively, using flows on
S1 and [�1, 1] as building blocks. By combining these con-
structions, we can build a wide range of compact connected
manifolds of interest to fundamental and applied sciences.

2.1. Flows on the Circle S1

Depending on what is most convenient, we will
sometimes view S1 as embedded in R2, that is�
(x1, x2) 2 R2

;x2
1 + x2

2 = 1
 

, or parameterize it by a co-
ordinate ✓ 2 [0, 2⇡], identifying 0 and 2⇡ as the same point.
In this section, we describe how to construct a diffeomor-
phism f that maps the circle to itself.

Since 0 and 2⇡ are identified as the same point, the trans-
formation f : [0, 2⇡] ! [0, 2⇡] must satisfy appropriate
boundary conditions to be a valid diffeomorphism on the
circle. The following conditions are sufficient:

f(0) = 0, (3)
f(2⇡) = 2⇡, (4)
rf(✓) > 0, (5)

rf(✓)|✓=0 = rf(✓)|✓=2⇡. (6)

The first two conditions ensure that 0 and 2⇡ are mapped to
the same point on the circle. The third condition ensures that
the transformation is strictly monotonic, and thus invertible.
Finally, the fourth condition ensures that the Jacobians agree
at 0 and 2⇡, thus the probability density is continuous.

A restriction in the above conditions is that 0 and 2⇡ are
fixed points. Nonetheless, this restriction can be easily over-
come by composing a transformation f satisfying these
conditions with a phase translation ✓ 7! (✓ + �) mod 2⇡,
where � can be a learnable parameter. Such a phase trans-
lation is volume-preserving, so it does not incur a volume
correction in the calculation of the probability density.

Given a collection {fi}i=1,...,K of transformations satisfy-
ing the above conditions, we can combine them into a more
complex transformation f that also meets these conditions.
One such mechanism for combining transformations is func-
tion composition f = fK � · · · � f1, which can easily be
seen to satisfy Equations (3) to (6). Alternatively, we can
combine transformations using convex combinations, as any
convex combination f(✓) =

P
i ⇢ifi(✓) where ⇢i � 0 andP

i ⇢i = 1 also satisfies Equations (3) to (6). By alternating
between function compositions and convex combinations,
we can construct expressive flows on S1 from simple ones.

Next, we describe three circle diffeomorphisms that by con-
struction satisfy the above conditions: Möbius transforma-

tions, circular splines, and non-compact projections.

2.1.1. MÖBIUS TRANSFORMATION

Möbius transformations have previously been used to de-
fine distributions on the circle and sphere (see e.g. Kato
& McCullagh, 2015; Wang, 2013). We will first describe
the Möbius transformation in the general case of the sphere
SD, and then show how to adapt it, when D = 1, to create
expressive flows on the circle.

!

z
0

g!(z)

h!(z)

Consider SD, the unit sphere in
RD+1. Let ! be a point in RD+1

with norm strictly less than 1. For
any point z in SD, draw a straight
line between z and ! (as shown on
the left). This line intersects SD at
exactly two distinct points. One is
z. Call the other one g!(z).

Definition 1. We define the Möbius transformation h!(z)
of z with centre ! to be �g!(z).

An explicit formula for h! is given by

h!(z) =
1� k!k2

kz � !k2
(z � !)� !. (7)

When ! = 0, the transformation h! is just the identity.
When D = 2, these transformations are related to the more
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proposed by Falorsi et al. (2019) for the case where N is a
Lie group, is to apply the usual Euclidean flows on the Lie
algebra of N (i.e. the tangent space at the identity element),
and then use the exponential map to project the Lie algebra
onto N . However, this approach results in models that are
hard to compose with other maps on the manifold.

Our main contribution is to propose a new set of expres-
sive normalizing flows for the case where M and N are
compact and connected differentiable manifolds. Specif-
ically, we construct flows on the 1-dimensional circle S1,
the D-dimensional torus TD, the D-dimensional sphere SD,
and arbitrary products of these spaces. The proposed flows
can be made arbitrarily flexible, and avoid the numerical in-
stabilities of previous approaches. Our flows are applicable
when we already know the manifold structure of the data,
such as when the data is a set of angles or latent variables
with a prescribed topology. We empirically demonstrate the
proposed flows on synthetic inference problems designed to
test the ability to model sharp and multi-modal densities.

2. Methods
We will begin by constructing expressive and numerically
stable flows on the circle S1. Then, we will use these flows
as building blocks to construct flows on the torus TD and
the sphere SD. The torus TD can be written as a Cartesian
product of D copies of S1, which will allow us to build flows
on TD autoregressively. The sphere SD can be written as a
transformation of the cylinder SD�1

⇥ [�1, 1], which will
allow us to build flows on SD recursively, using flows on
S1 and [�1, 1] as building blocks. By combining these con-
structions, we can build a wide range of compact connected
manifolds of interest to fundamental and applied sciences.

2.1. Flows on the Circle S1

Depending on what is most convenient, we will
sometimes view S1 as embedded in R2, that is�
(x1, x2) 2 R2
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1 + x2
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, or parameterize it by a co-
ordinate ✓ 2 [0, 2⇡], identifying 0 and 2⇡ as the same point.
In this section, we describe how to construct a diffeomor-
phism f that maps the circle to itself.

Since 0 and 2⇡ are identified as the same point, the trans-
formation f : [0, 2⇡] ! [0, 2⇡] must satisfy appropriate
boundary conditions to be a valid diffeomorphism on the
circle. The following conditions are sufficient:

f(0) = 0, (3)
f(2⇡) = 2⇡, (4)
rf(✓) > 0, (5)

rf(✓)|✓=0 = rf(✓)|✓=2⇡. (6)

The first two conditions ensure that 0 and 2⇡ are mapped to
the same point on the circle. The third condition ensures that
the transformation is strictly monotonic, and thus invertible.
Finally, the fourth condition ensures that the Jacobians agree
at 0 and 2⇡, thus the probability density is continuous.

A restriction in the above conditions is that 0 and 2⇡ are
fixed points. Nonetheless, this restriction can be easily over-
come by composing a transformation f satisfying these
conditions with a phase translation ✓ 7! (✓ + �) mod 2⇡,
where � can be a learnable parameter. Such a phase trans-
lation is volume-preserving, so it does not incur a volume
correction in the calculation of the probability density.

Given a collection {fi}i=1,...,K of transformations satisfy-
ing the above conditions, we can combine them into a more
complex transformation f that also meets these conditions.
One such mechanism for combining transformations is func-
tion composition f = fK � · · · � f1, which can easily be
seen to satisfy Equations (3) to (6). Alternatively, we can
combine transformations using convex combinations, as any
convex combination f(✓) =

P
i ⇢ifi(✓) where ⇢i � 0 andP

i ⇢i = 1 also satisfies Equations (3) to (6). By alternating
between function compositions and convex combinations,
we can construct expressive flows on S1 from simple ones.

Next, we describe three circle diffeomorphisms that by con-
struction satisfy the above conditions: Möbius transforma-

tions, circular splines, and non-compact projections.

2.1.1. MÖBIUS TRANSFORMATION

Möbius transformations have previously been used to de-
fine distributions on the circle and sphere (see e.g. Kato
& McCullagh, 2015; Wang, 2013). We will first describe
the Möbius transformation in the general case of the sphere
SD, and then show how to adapt it, when D = 1, to create
expressive flows on the circle.
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RD+1. Let ! be a point in RD+1

with norm strictly less than 1. For
any point z in SD, draw a straight
line between z and ! (as shown on
the left). This line intersects SD at
exactly two distinct points. One is
z. Call the other one g!(z).

Definition 1. We define the Möbius transformation h!(z)
of z with centre ! to be �g!(z).

An explicit formula for h! is given by
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When ! = 0, the transformation h! is just the identity.
When D = 2, these transformations are related to the more
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Abstract
Normalizing flows are a powerful tool for build-
ing expressive distributions in high dimensions.
So far, most of the literature has concentrated on
learning flows on Euclidean spaces. Some prob-
lems however, such as those involving angles, are
defined on spaces with more complex geometries,
such as tori or spheres. In this paper, we propose
and compare expressive and numerically stable
flows on such spaces. Our flows are built recur-
sively on the dimension of the space, starting from
flows on circles, closed intervals or spheres.

1. Introduction
Normalizing flows are a flexible way of defining complex
distributions on high-dimensional data. A normalizing flow

maps samples from a base distribution ⇡(u) to samples from
a target distribution p(x) via a transformation f as follows:

x = f(u) where u ⇠ ⇡(u). (1)

The transformation f is restricted to be a diffeomorphism:
it must be invertible and both f and its inverse f�1 must
be differentiable. This restriction allows us to calculate the
target density p(x) via a change of variables:

p(x) = ⇡
�
f�1

(x)
� ����det

✓
@f�1

@x

◆���� . (2)

In practice, ⇡(u) is often taken to be a simple density that
can be easily evaluated and sampled from, and either f or
its inverse f�1 are implemented via neural networks such
that the Jacobian determinant is efficient to compute.

A normalizing flow implements two operations: sampling
via Equation (1), and evaluating the density via Equation (2).
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cal Physics, Massachusetts Institute of Technology, Cam-
bridge, MA 02139, U.S.A. Correspondence to: Danilo
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ios <gpapamak@google.com>, Sébastien Racanière <sra-
caniere@google.com>.
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These operations have distinct computational requirements:
generating samples and evaluating their density requires
only f and its Jacobian determinant, whereas evaluating
the density of arbitrary datapoints requires only f�1 and its
Jacobian determinant. Thus, the intended usage of the flow
dictates whether f , f�1 or both must have efficient imple-
mentations. For an overview of various implementations
and associated trade-offs, see (Papamakarios et al., 2019).

In most existing implementations of normalizing flows, both
u and x are defined to live in the Euclidean space RD,
where D is determined by the data dimensionality. However,
this Euclidean formulation is not always suitable, as some
datasets are defined on spaces with non-Euclidean geometry.
For example, if x represents an angle, its ‘natural habitat’
is the 1-dimensional circle; if x represents the location of
a particle in a box with periodic boundary conditions, x is
naturally defined on the 3-dimensional torus.

The need for probabilistic modelling of non-Euclidean data
often arises in applications where the data is a set of angles,
axes or directions (Mardia & Jupp, 2009). Such applications
include protein-structure prediction in molecular biology
(Hamelryck et al., 2006; Mardia et al., 2007; Boomsma et al.,
2008; Shapovalov & Dunbrack Jr, 2011), rock-formation
analysis in geology (Peel et al., 2001), and path naviga-
tion and motion estimation in robotics (Feiten et al., 2013;
Senanayake & Ramos, 2018). Non-Euclidean spaces have
also been explored in machine learning, and specifically
generative modelling, as latent spaces of variational autoen-
coders (Davidson et al., 2018; Falorsi et al., 2018; Wang &
Wang, 2019; Mathieu et al., 2019; Wang et al., 2019).

A more general formulation of normalizing flows that is
suitable for non-Euclidean data is to take u 2 M and
x 2 N , where M and N are differentiable manifolds and
f : M ! N is a diffeomorphism between them. A diffi-
culty with this formulation is that M and N are diffeomor-

phic by definition, so they must have the same topological
properties (Kobayashi & Nomizu, 1963). To circumvent this
restriction, Gemici et al. (2016) first project M to RD, apply
the usual flows there, and then project RD back to N . How-
ever, a naive application of this approach can be problematic
when M or N are not diffeomorphic to RD; in this case,
the projection maps will necessarily contain singularities
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usual Möbius maps (az + b)/(cz + d); see formula (6) of
Kato & McCullagh (2015).

The transformation h! expands the part of the sphere that is
close to !, and contracts the rest. Hence, it can transform
a uniform base distribution into a unimodal smooth distri-
bution parameterized by !. One property of the Möbius
transformation is that it does not become more expressive
by composing various h!. This is because the set of trans-
formations Rh! , where R can be any matrix in SO(D+ 1),
forms a group under function composition (see Theorem
2 of Kato & McCullagh, 2015). Since composition of two
such transformations remains a member of the group, their
expressivity is not increased.

Here, we specialize the Möbius transform to the circle
(where D = 1), and use it to define a circle diffeomor-
phism f! parameterized by !. The action of h! on the
angle ✓ already satisfies Equations (5) and (6), but does not
leave ✓ = 0 invariant. To fix that, let R! be a rotation in
R2 with centre (0, 0) that maps h!(1, 0) back to (1, 0). We
define f!(✓) to be the polar angle, in [0, 2⇡), of R! �h!(z),
and extend f! by continuity to the whole range [0, 2⇡] by
setting f!(2⇡) = 2⇡. This function satisfies Equations (3)
to (6), and is thus a valid circle diffeomorphism.

We can easily combine various f! via convex combinations
and obtain expressive distributions on S1—see Figure 7 in
the appendix for an illustration. Unlike a single Möbius
transform, a convex combination of two or more Möbius
transforms is not analytically invertible, but it can be numer-
ically inverted with precision ✏ using bisection search with
O
�
log

1
✏

�
iterations.

2.1.2. CIRCULAR SPLINES (CS)

Spline flows is a methodology for creating arbitrarily flexi-
ble flow transformations from R to itself, first proposed by
Müller et al. (2019) and further developed by Durkan et al.
(2019a;b). Here, we will show how to adapt the rational-

quadratic spline flows of Durkan et al. (2019b) to satisfy the
sufficient boundary conditions of circle diffeomorphisms.

Rational-quadratic spline flows define the transformation
f : R ! R piecewise as a combination of K segments, with
each segment being a simple rational-quadratic function.
Specifically, the transformation is parameterized by a set of
K + 1 knot points {xk, yk}k=0,...,K and a set of K slopes
{sk}k=1,...,K , such that xk�1 < xk, yk�1 < yk and sk > 0

for all k = 1, . . . ,K. Then, in each interval [xk�1, xk], the
transformation f is defined to be a rational quadratic:

f(✓) =
↵k2✓2 + ↵k1✓ + ↵k0

�k2✓2 + �k1✓ + �k0
, (8)

where the coefficients {↵ki,�ki}i=0,1,2 are chosen so that
f is strictly monotonically increasing and f(xk�1) = yk�1,

f(xk) = yk, and rf(✓)|✓=xk = sk for all k = 1 . . . ,K
(see Durkan et al., 2019b, for more details).

We can easily restrict f to be a diffeomorphism from [0, 2⇡]
to itself, by setting x0 = y0 = 0 and xK = yK = 2⇡. This
construction satisfies the first three sufficient conditions in
Equations (3) to (5), and can be used to define probabil-
ity densities on the closed interval [0, 2⇡]. In addition, by
setting s1 = sK , we satisfy the fourth condition in Equa-
tion (6), and hence we obtain a valid circle diffeomorphism
which we refer to as a circular spline (CS).

Circular splines can be made arbitrarily flexible by increas-
ing the number of segments K. Therefore, unlike Möbius
transformations, it is not necessary to combine them via con-
vex combinations to increase their expressivity. An advan-
tage of circular splines is that they can be inverted exactly,
by first locating the corresponding segment (which can be
done in O(logK) iterations using binary search since the
segments are sorted), and then inverting the correspond-
ing rational quadratic (which can be done analytically by
solving a quadratic equation).

2.1.3. NON-COMPACT PROJECTION (NCP)

As discussed in the introduction, Gemici et al. (2016) project
the manifold to RD, apply the usual flows there, and then
project RD back to the manifold. Naively applying this
method can be numerically unstable. However, here we
show that, with some care, the method can be specialized
to S1 in a numerically stable manner. Since this method
involves projecting S1 to the non-compact space R, we refer
to it as non-compact projection (NCP).

We will use the projection x : (0, 2⇡) ! R defined by
x(✓) = tan

�
✓
2 �

⇡
2

�
. This projection maps the circle minus

the point ✓ = 0 bijectively onto R. Applying the affine
transformation g(x) = ↵x + � in the non-compact space,
where ↵ > 0 and � are learnable parameters, defines a
corresponding flow on the circle, given by

f(✓) = x�1
� g � x(✓)

= 2 tan
�1

✓
↵ tan

✓
✓

2
�

⇡

2

◆
+ �

◆
+ ⇡,

(9)

with gradient

rf(✓) =


1 + �2

↵
sin

2

✓
✓

2

◆
+ ↵ cos

2

✓
✓

2

◆
� � sin ✓

��1

.

Even though the expression for f is not defined at the end-
points 0 and 2⇡, the expression for the gradient is. The trans-
formation satisfies the appropriate boundary conditions,

lim
✓!0+

f(✓) = 0,

lim
✓!2⇡�

f(✓) = 2⇡,

rf(✓)|✓=0 = rf(✓)|✓=2⇡ = ↵�1.
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transformation is that it does not become more expressive
by composing various h!. This is because the set of trans-
formations Rh! , where R can be any matrix in SO(D+ 1),
forms a group under function composition (see Theorem
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setting s1 = sK , we satisfy the fourth condition in Equa-
tion (6), and hence we obtain a valid circle diffeomorphism
which we refer to as a circular spline (CS).
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solving a quadratic equation).

2.1.3. NON-COMPACT PROJECTION (NCP)

As discussed in the introduction, Gemici et al. (2016) project
the manifold to RD, apply the usual flows there, and then
project RD back to the manifold. Naively applying this
method can be numerically unstable. However, here we
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involves projecting S1 to the non-compact space R, we refer
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where ↵ > 0 and � are learnable parameters, defines a
corresponding flow on the circle, given by

f(✓) = x�1
� g � x(✓)

= 2 tan
�1

✓
↵ tan

✓
✓

2
�

⇡

2

◆
+ �

◆
+ ⇡,

(9)

with gradient

rf(✓) =


1 + �2

↵
sin

2

✓
✓

2

◆
+ ↵ cos

2

✓
✓

2

◆
� � sin ✓

��1

.

Even though the expression for f is not defined at the end-
points 0 and 2⇡, the expression for the gradient is. The trans-
formation satisfies the appropriate boundary conditions,

lim
✓!0+

f(✓) = 0,

lim
✓!2⇡�

f(✓) = 2⇡,

rf(✓)|✓=0 = rf(✓)|✓=2⇡ = ↵�1.

f!(✓) = R! � h!(z)
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Rotation to fix  
f(✓ = 0)
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usual Möbius maps (az + b)/(cz + d); see formula (6) of
Kato & McCullagh (2015).

The transformation h! expands the part of the sphere that is
close to !, and contracts the rest. Hence, it can transform
a uniform base distribution into a unimodal smooth distri-
bution parameterized by !. One property of the Möbius
transformation is that it does not become more expressive
by composing various h!. This is because the set of trans-
formations Rh! , where R can be any matrix in SO(D+ 1),
forms a group under function composition (see Theorem
2 of Kato & McCullagh, 2015). Since composition of two
such transformations remains a member of the group, their
expressivity is not increased.

Here, we specialize the Möbius transform to the circle
(where D = 1), and use it to define a circle diffeomor-
phism f! parameterized by !. The action of h! on the
angle ✓ already satisfies Equations (5) and (6), but does not
leave ✓ = 0 invariant. To fix that, let R! be a rotation in
R2 with centre (0, 0) that maps h!(1, 0) back to (1, 0). We
define f!(✓) to be the polar angle, in [0, 2⇡), of R! �h!(z),
and extend f! by continuity to the whole range [0, 2⇡] by
setting f!(2⇡) = 2⇡. This function satisfies Equations (3)
to (6), and is thus a valid circle diffeomorphism.

We can easily combine various f! via convex combinations
and obtain expressive distributions on S1—see Figure 7 in
the appendix for an illustration. Unlike a single Möbius
transform, a convex combination of two or more Möbius
transforms is not analytically invertible, but it can be numer-
ically inverted with precision ✏ using bisection search with
O
�
log

1
✏

�
iterations.

2.1.2. CIRCULAR SPLINES (CS)

Spline flows is a methodology for creating arbitrarily flexi-
ble flow transformations from R to itself, first proposed by
Müller et al. (2019) and further developed by Durkan et al.
(2019a;b). Here, we will show how to adapt the rational-

quadratic spline flows of Durkan et al. (2019b) to satisfy the
sufficient boundary conditions of circle diffeomorphisms.

Rational-quadratic spline flows define the transformation
f : R ! R piecewise as a combination of K segments, with
each segment being a simple rational-quadratic function.
Specifically, the transformation is parameterized by a set of
K + 1 knot points {xk, yk}k=0,...,K and a set of K slopes
{sk}k=1,...,K , such that xk�1 < xk, yk�1 < yk and sk > 0

for all k = 1, . . . ,K. Then, in each interval [xk�1, xk], the
transformation f is defined to be a rational quadratic:

f(✓) =
↵k2✓2 + ↵k1✓ + ↵k0

�k2✓2 + �k1✓ + �k0
, (8)

where the coefficients {↵ki,�ki}i=0,1,2 are chosen so that
f is strictly monotonically increasing and f(xk�1) = yk�1,

f(xk) = yk, and rf(✓)|✓=xk = sk for all k = 1 . . . ,K
(see Durkan et al., 2019b, for more details).

We can easily restrict f to be a diffeomorphism from [0, 2⇡]
to itself, by setting x0 = y0 = 0 and xK = yK = 2⇡. This
construction satisfies the first three sufficient conditions in
Equations (3) to (5), and can be used to define probabil-
ity densities on the closed interval [0, 2⇡]. In addition, by
setting s1 = sK , we satisfy the fourth condition in Equa-
tion (6), and hence we obtain a valid circle diffeomorphism
which we refer to as a circular spline (CS).

Circular splines can be made arbitrarily flexible by increas-
ing the number of segments K. Therefore, unlike Möbius
transformations, it is not necessary to combine them via con-
vex combinations to increase their expressivity. An advan-
tage of circular splines is that they can be inverted exactly,
by first locating the corresponding segment (which can be
done in O(logK) iterations using binary search since the
segments are sorted), and then inverting the correspond-
ing rational quadratic (which can be done analytically by
solving a quadratic equation).

2.1.3. NON-COMPACT PROJECTION (NCP)

As discussed in the introduction, Gemici et al. (2016) project
the manifold to RD, apply the usual flows there, and then
project RD back to the manifold. Naively applying this
method can be numerically unstable. However, here we
show that, with some care, the method can be specialized
to S1 in a numerically stable manner. Since this method
involves projecting S1 to the non-compact space R, we refer
to it as non-compact projection (NCP).

We will use the projection x : (0, 2⇡) ! R defined by
x(✓) = tan

�
✓
2 �

⇡
2

�
. This projection maps the circle minus

the point ✓ = 0 bijectively onto R. Applying the affine
transformation g(x) = ↵x + � in the non-compact space,
where ↵ > 0 and � are learnable parameters, defines a
corresponding flow on the circle, given by

f(✓) = x�1
� g � x(✓)

= 2 tan
�1

✓
↵ tan

✓
✓

2
�

⇡

2

◆
+ �

◆
+ ⇡,

(9)

with gradient

rf(✓) =


1 + �2

↵
sin

2

✓
✓

2

◆
+ ↵ cos

2

✓
✓

2

◆
� � sin ✓

��1

.

Even though the expression for f is not defined at the end-
points 0 and 2⇡, the expression for the gradient is. The trans-
formation satisfies the appropriate boundary conditions,

lim
✓!0+

f(✓) = 0,

lim
✓!2⇡�

f(✓) = 2⇡,

rf(✓)|✓=0 = rf(✓)|✓=2⇡ = ↵�1.
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Figure 3. Learned densities on T2 using NCP, Möbius and CS
flows. Densities shown on the torus are from NCP.

Model KL [nats] ESS
MS (NT = 1,Km = 12,Ks = 32) 0.05 (0.01) 90%

EMP (NT = 1) 0.50 (0.09) 43%

EMSRE (NT = 1,K = 12) 0.82 (0.30) 42%

EMSRE (NT = 6,K = 5) 0.19 (0.05) 75%

EMSRE (NT = 24,K = 1) 0.10 (0.10) 85%

Table 1. Comparing baseline and proposed flows on S2 using KL
and ESS. The target density is the mixture of 4 modes shown
in Figure 4. We compare recursive Möbius-spline flow (MS),
exponential-map polynomial flow (EMP) and exponential-map
sum-of-radial flow (EMSRE). Brackets show error bars on the KL
from 3 replicas of each experiment. NT is the number of stacked
transformations for each flow; Km is the number of centres used
in Möbius; Ks is the number of segments in the spline flow; K
is the number of radial components in the radial exponential-map
flow. The polynomial scalar field is shown in Appendix E.

recursive flow. Figure 5 shows an example of learning a
density on SU(2) ⌘ S3 using the recursive flow. Finally,
Appendix I shows an example of training a recursive flow
(using splines for both the circle and the interval) on data
sampled form a ‘map of the world’ density on S2.

5. Discussion
This work shows how to construct flexible normalizing flows
on tori and spheres of any dimension in a numerically sta-
ble manner. Unlike many of the distributions traditionally
used in directional statistics, the proposed flows can be
made arbitrarily flexible, but have tractable and exact den-
sity evaluation and sampling algorithms. We conclude with
a comparison of the proposed models, a discussion of their
limitations, and some preliminary thoughts on how to extend
flows to other manifolds of interest to fundamental physics.

Target Model

Figure 4. Learned multi-modal density on S2 using exponential-
map flows, using the Mollweide projection for visualization. The
model is a composition of 24 exponential-map transforms, using
the radial scalar field with 1 component.

Figure 5. Learned multi-modal density on SU(2) ⌘ S3 using the
recursive flow. Each column shows an S2 slice of the S3 density
along a fixed axis using the Mollweide projection. Top row: target
density. Bottom row: learned density. We used a Möbius trans-
form with Km = 32 for the circle, and spline transforms with
Ks = 64 for the two intervals (ESS = 84%, KL = 0.14).

5.1. Comparison, Scope and Limitations

Among the flows on the circle, Möbius and NCP performed
the best, with CS performing less well for highly concen-
trated target densities. However, increasing the expressivity
of Möbius and NCP required convex combinations, whereas
CS can be made more expressive by adding more spline
segments. As a result, CS is the cheapest to invert (it can be
done analytically), whereas Möbius and NCP (with more
than one component) require a root-finding algorithm such
as bisection search. Therefore, in practice it may be prefer-
able to use CS if both density evaluation and sampling are
required, and use Möbius or NCP otherwise.

On SD, the recursive flow performed better than the
exponential-map flow. In addition, the recursive flow scales
better to high dimensions since its density can be computed
efficiently, whereas the density of the exponential-map flow
has a computational cost of O

�
D3

�
. The theoretical advan-

tage of the exponential-map flow is that it is intrinsic to the
sphere, but this advantage did not result in a practical benefit
in our experiments.

5.2. Towards Normalizing Flows on SU(D) and U(D)

The unitary Lie groups U(1), SU(2) and SU(3) are of partic-
ular interest to fundamental physics, because the symmetry
groups of particle interactions are constructed from them
(Woit, 2017). We have shown that we can construct expres-
sive flows on U(1) ⌘ S1 and SU(2) ⌘ S3.

Our recursive construction for SD provides a starting point
for flows on SU(D) for D � 3 and U(D) for D � 2, via re-
cursively building SU(D) from SU(D � 1) and U(1)

2D�1,
and U(D) from SU(D) and extra angles. These decom-
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Abstract
Normalizing flows are a powerful tool for build-
ing expressive distributions in high dimensions.
So far, most of the literature has concentrated on
learning flows on Euclidean spaces. Some prob-
lems however, such as those involving angles, are
defined on spaces with more complex geometries,
such as tori or spheres. In this paper, we propose
and compare expressive and numerically stable
flows on such spaces. Our flows are built recur-
sively on the dimension of the space, starting from
flows on circles, closed intervals or spheres.

1. Introduction
Normalizing flows are a flexible way of defining complex
distributions on high-dimensional data. A normalizing flow

maps samples from a base distribution ⇡(u) to samples from
a target distribution p(x) via a transformation f as follows:

x = f(u) where u ⇠ ⇡(u). (1)

The transformation f is restricted to be a diffeomorphism:
it must be invertible and both f and its inverse f�1 must
be differentiable. This restriction allows us to calculate the
target density p(x) via a change of variables:

p(x) = ⇡
�
f�1

(x)
� ����det

✓
@f�1

@x

◆���� . (2)

In practice, ⇡(u) is often taken to be a simple density that
can be easily evaluated and sampled from, and either f or
its inverse f�1 are implemented via neural networks such
that the Jacobian determinant is efficient to compute.

A normalizing flow implements two operations: sampling
via Equation (1), and evaluating the density via Equation (2).

*Equal contribution 1DeepMind, London, U.K. 2New
York University, New York, U.S.A. 3Center for Theoreti-
cal Physics, Massachusetts Institute of Technology, Cam-
bridge, MA 02139, U.S.A. Correspondence to: Danilo
Jimenez Rezende <danilor@google.com>, George Papamakar-
ios <gpapamak@google.com>, Sébastien Racanière <sra-
caniere@google.com>.

Preprint. Copyright 2020 by the author(s).

These operations have distinct computational requirements:
generating samples and evaluating their density requires
only f and its Jacobian determinant, whereas evaluating
the density of arbitrary datapoints requires only f�1 and its
Jacobian determinant. Thus, the intended usage of the flow
dictates whether f , f�1 or both must have efficient imple-
mentations. For an overview of various implementations
and associated trade-offs, see (Papamakarios et al., 2019).

In most existing implementations of normalizing flows, both
u and x are defined to live in the Euclidean space RD,
where D is determined by the data dimensionality. However,
this Euclidean formulation is not always suitable, as some
datasets are defined on spaces with non-Euclidean geometry.
For example, if x represents an angle, its ‘natural habitat’
is the 1-dimensional circle; if x represents the location of
a particle in a box with periodic boundary conditions, x is
naturally defined on the 3-dimensional torus.

The need for probabilistic modelling of non-Euclidean data
often arises in applications where the data is a set of angles,
axes or directions (Mardia & Jupp, 2009). Such applications
include protein-structure prediction in molecular biology
(Hamelryck et al., 2006; Mardia et al., 2007; Boomsma et al.,
2008; Shapovalov & Dunbrack Jr, 2011), rock-formation
analysis in geology (Peel et al., 2001), and path naviga-
tion and motion estimation in robotics (Feiten et al., 2013;
Senanayake & Ramos, 2018). Non-Euclidean spaces have
also been explored in machine learning, and specifically
generative modelling, as latent spaces of variational autoen-
coders (Davidson et al., 2018; Falorsi et al., 2018; Wang &
Wang, 2019; Mathieu et al., 2019; Wang et al., 2019).

A more general formulation of normalizing flows that is
suitable for non-Euclidean data is to take u 2 M and
x 2 N , where M and N are differentiable manifolds and
f : M ! N is a diffeomorphism between them. A diffi-
culty with this formulation is that M and N are diffeomor-

phic by definition, so they must have the same topological
properties (Kobayashi & Nomizu, 1963). To circumvent this
restriction, Gemici et al. (2016) first project M to RD, apply
the usual flows there, and then project RD back to N . How-
ever, a naive application of this approach can be problematic
when M or N are not diffeomorphic to RD; in this case,
the projection maps will necessarily contain singularities
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Therefore, we can extend f to [0, 2⇡] by continuity such
that f(0) = 0 and f(2⇡) = 2⇡, which yields a valid circle
diffeomorphism.

The above boundary conditions are satisfied when the trans-
formation g is affine, but they are not generally satisfied
when g is an arbitrary diffeomorphism. This limits the type
of flow we can put on the non-compact space. Therefore,
instead of making g more expressive, we choose to increase
the expressivity of the NCP flow by combining multiple
transformations f via convex combinations.

A potential issue with the above transformation is that, near
the endpoints 0 and 2⇡, evaluating f using Equation (9)
directly is numerically unstable. To circumvent this numeri-
cal difficulty, we can use equivalent linearized expressions
when ✓ is near the endpoints. For example, for ✓ close to 0

we can approximate f(✓) ⇡ ✓/↵, whereas for ✓ close to 2⇡
we have f(✓) ⇡ 2⇡ + (✓ � 2⇡)/↵.

2.2. Generalization to the Torus TD

Having defined flows on the circle S1, we can easily con-
struct autoregressive flows on the D-dimensional torus
TD

⌘ (S1)D. Any density p(✓1, . . . , ✓D) on TD can be
decomposed via the chain rule of probability as

p(✓1, . . . , ✓D) =

Y
i
p(✓i | ✓1, . . . , ✓i�1), (10)

where each conditional p(✓i | ✓1, . . . , ✓i�1) is a density on
S1. Each conditional density can be implemented via a
flow f i : S1 ! S1, whose parameters  i are a function of
(✓1, . . . , ✓i�1). Thus the joint transformation f : TD

! TD

given by f(✓1, . . . , ✓D) = (f 1(✓1), . . . , f D (✓D)) is an
autoregressive flow on the torus. In the terminology of Papa-
makarios et al. (2019, Section 3.1), an autoregressive flow on
a torus is simply an autoregressive flow whose transformers

are circle diffeomorphisms, i.e. obey the boundary condi-
tions in Equations (3) to (6). As with any autoregressive
flow, the Jacobian of f is triangular, therefore the Jacobian
determinant in the density calculation in Equation (2) can be
computed efficiently as the product of the diagonal terms.

The parameters  i of the i-th transformer are a function
of (✓1, . . . , ✓i�1) known as the i-th conditioner. In or-
der to guarantee that the conditioners are periodic func-
tions of each ✓i, we can make  i be a function of
(cos ✓1, sin ✓1, . . . , cos ✓i�1, sin ✓i�1) instead. In our exper-
iments, we implemented the conditioners using coupling

layers (Dinh et al., 2017). Implementations based on mask-

ing (Kingma et al., 2016; Papamakarios et al., 2017) are
also possible.

More generally, autoregressive flows can be applied in the
same way on any manifold that can be written as a Cartesian
product of circles and intervals, such as the 2-dimensional
cylinder. Flows on intervals can be constructed e.g. using

Figure 1. Illustration of the recursive flow on the sphere S2.

regular (non-circular) splines as described in Section 2.1.2.
Thus, by taking f i to be either a circle diffeomorphism
or an interval diffeomorphism as required, we can handle
arbitrary products of circles and intervals.

2.3. Generalization to the Sphere SD

The Möbius transformation (Section 2.1.1) can in princi-
ple be used to define flows on the sphere SD for D � 2,
but, as noted, its expressivity does not increase by com-
position. Increasing the expressivity via convex combina-
tions in D = 1 was only possible because we expressed
diffeomorphisms on S1 as strictly increasing functions on
[0, 2⇡]. This construction however does not readily extend
to D � 2. Instead, we propose two alternative flow construc-
tions for SD: a recursive construction that uses cylindrical
coordinates, and a construction based on the exponential

map. In what follows, SD will be embedded in RD+1 as�
(x1, . . . , xD+1) 2 RD+1

;
P

i x
2
i = 1

 
.

2.3.1. RECURSIVE CONSTRUCTION

In Section 2.1, we described three methods for building uni-
variate flows on S1. We also described how to build univari-
ate flows on the interval [�1, 1] using splines (Section 2.1.2).
Using circle and interval flows as building blocks, we will
construct a multivariate flow on SD for D � 2 by recursing
over the dimension of the sphere.

Our construction works as follows. First, we transform the
sphere SD into the cylinder SD�1

⇥ [�1, 1] using the map

Ts!c(x) =

0

@ x1:Dq
1� x2

D+1

, xD+1

1

A . (11)

Then a two-stage autoregressive flow is applied on the cylin-
der. The ‘height’ r 2 [�1, 1] is transformed first by a uni-
variate flow g : [�1, 1] ! [�1, 1], and the ‘base’ z is trans-
formed second by a conditional flow f : SD�1

! SD�1

whose parameters are a function of g(r), that is

Tc!c(z, r) =
⇣
f(z; g(r)), g(r)

⌘
. (12)

Finally, the cylinder is transformed back to the sphere by

Tc!s(z, r) =
⇣
z
p
1� r2, r

⌘
. (13)

Flows on spheres and tori
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FIG. 1. Left: distributions that exactly respect gauge sym-
metry factor over the degrees of freedom, such that they have
uniform density in the pure gauge degrees of freedom and
a non-trivial density only in the gauge invariant degrees of
freedom. Right: arbitrary distributions on the space of gauge
configurations do not factor, and uniformity in the pure gauge
direction must be approximately learned by the model.

3. Gauge symmetry group, where each element ⌦ can
be defined as a group-valued field over lattice sites,
⌦(x) 2 G, that transforms links of a field configu-
ration as:

(⌦ · U)µ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂). (10)

Any expressive flow-based model should approximately
reproduce the symmetries of the original action after op-
timization, even if these symmetries are not imposed in
the model. Exact symmetries are recovered on average in
the sampled distribution after reweighting or composing
samples into a Markov chain. Nevertheless, any break-
ing of the symmetries in the model reflects di↵erences
between the model and target distribution, and is thus
associated with sampling ine�ciencies in the form of in-
creased variance or correlations in the Markov chain. Im-
posing symmetries explicitly in the form of the model
e↵ectively reduces the variational parameter space to in-
clude only symmetry-respecting maps, i.e. those that fac-
torize the distribution. An example of such factorization
is illustrated for gauge symmetry in Fig. 1. In many
machine learning contexts, it has been found that ex-
plicitly preserving the symmetries of interest in models
improves both the optimization costs and ultimate model
quality [22, 32–37]. For example, gauge symmetry is a
large symmetry group with dimension proportional to the
number of lattice sites; in our study of U(1) gauge theory
in Ref. [11], it was shown that imposing this symmetry
exactly was necessary to construct flow-based samplers of
comparable or better e�ciency than traditional sampling
approaches.

Interactions between symmetry groups are also an im-
portant consideration. For example, a simple way to
achieve the factorization of the model distribution de-
picted in Fig. 1 would be to employ a gauge fixing pro-
cedure that reduces configurations to gauge invariant de-
grees of freedom only and sample only in the remaining
lower-dimensional space. This could be achieved with
a maximal tree gauge fixing [38, 39]. However, gauge
fixing procedures like the maximal tree procedure that
explicitly factorize the degrees of freedom are not trans-
lationally invariant. On the other hand, gauge fixing

procedures based on implicit di↵erential equation con-
straints instead of an explicit factorization are known
to preserve translational invariance in the path integral
formulation [40], but it is unclear how to restrict flow-
based models to act on configurations satisfying these
constraints. Recent work in the Hamiltonian formulation
has suggested ways to factor out pure gauge degrees of
freedom for U(1) gauge theory, but it is not clear whether
this can be extended to SU(N) gauge theory or the path
integral formulation [41]. Here we develop an approach
to simultaneously impose gauge and translational sym-
metries on models acting on all of the degrees of freedom
of an SU(N) gauge field, without any preemptive factor-
ization along the lines of gauge fixing.

To preserve a symmetry in a flow-based sampling
model, it is su�cient to sample from a prior distribution
that is exactly invariant under the symmetry and trans-
form the samples using an invertible transformation that
is equivariant under the symmetry [42–44], meaning that
symmetry transformations t commute with application of
the function,

f(t · U) = t · f(U). (11)

For lattice gauge theories, a uniform prior distribution
(with respect to the product Haar measure) is easily
sampled and is symmetric under translations, hypercu-
bic symmetries, and gauge symmetry. Equivariance of
the map f can be guaranteed by ensuring that the indi-
vidual coupling layers in the decomposition of f are each
equivariant:

gi(t · U) = t · gi(U)

=) f(t · U) = gn(gn�1(. . . g1(t · U) . . . )) = t · f(U).
(12)

In our approach [11], coupling layers decompose the
components of a field configuration by spacetime loca-
tion, and therefore making coupling layers equivariant
to spacetime symmetries (translational and hypercubic
symmetries) and making coupling layers equivariant to
internal symmetries (such as gauge symmetry) must be
handled in di↵erent ways, but can be simultaneously
achieved.

It has been noted that convolutional neural networks
are equivariant to discrete translations, and a similar
approach can extend equivariance to rotations and re-
flections [9, 45]. For lattice gauge theory, using these
equivariant networks acting on the frozen links inside
each coupling layer and choosing symmetric decomposi-
tions into frozen and updated links ensures each coupling
layer is equivariant under (a large subgroup of) transla-
tions. For example, in Sec. IV we construct models for
two-dimensional gauge theory using convolutional neu-
ral networks with a decomposition pattern that repeats
after o↵sets by 4 sites in both directions on the lattice,
resulting in equivariance under the translational symme-
try group modulo Z4 ⇥Z4. Though the full translational
symmetry group is not preserved exactly, the residual
group that must be learned has a fixed size independent
of the lattice volume.
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The prior distribution is symmetric

Each coupling layer is equivariant under the symmetry 
i.e., all transformations commute through application of the 
coupling layer

1.    

2. 

 
Flow defined from coupling layers will be invariant under symmetry if
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Gauge transformation
Separate group transformation of 
each link matrix

Uµ(x)

x

µ̂

⌫̂

x+ µ̂

Uµ(x)

3

tion value of an operator O that defines some physical quantity is given by:

hOi =
1

Z

Z
D D ̄DAO[ ,  ̄, A] e�S[ , ̄,A] (1)

=
1

Z

Z
DUÕ[U ] e�S̃[U ]

, (2)

where Z =
R
D D ̄DA e

�S[ , ̄,A], the (anti-)fermion and gluon fields (gauge fields) are denoted
by  ( ̄) and A, and S[ ,  ̄, A] is the discretised QCD action (defined in Appendix B 1). In the
second line, the fermion and anti-fermion fields are integrated out exactly, and the gauge fields are
transformed to link fields U = e

iA, to give an e↵ective action S̃[U ] and operator Õ[U ] depending
only on the gluon link fields. The resulting integral can be approximated as

hOi u 1

Ncfg

NcfgX

i=1

O[Ui], (3)

where the gauge field configurations Ui (i indexes the configurations in a given “ensemble” of

fields) are distributed according to the probability measure e
�S̃[U ]. In practice, this is guaranteed

by sampling the fields from a Markov chain Monte-Carlo stream for which this probability measure
is a fixed point. These representative gauge fields are the input data for the ML approaches to
parametric regression studied here. For additional details of the LQCD approach, see Refs. [2, 3]
and Appendix B 1.

Lattice QCD gauge fields are represented as links between sites on a 4-dimensional lattice
of volume2 V = L

3
⇥ T , with the lattice sites separated by some physical distance a, typically

0.05–0.15 fm. Each link, labelled by Uµ(x), where x denotes the spacetime coordinates of the
origin site and µ the direction of the link, is encoded by an SU(3) matrix (a 3 ⇥ 3 complex
matrix M with M

�1 = M
† and det[M ] = 1)3. Links in opposing directions are related via

U�µ(x) = U
†
µ(x � µ̂), and only links in the positive direction are stored. In this format, a gauge

field used in typical modern lattice QCD calculations, where for example L = 64 and T = 128, is
described by L

3
⇥T ⇥4⇥18 ⇡ O(109) floating point or double precision numbers, where the factor

of 4 arises from the number of positive spacetime directions (labelled by µ). In order to recover
QCD results, calculations must be performed on a number of ensembles of field configurations with
di↵erent lattice spacings a and lattice volumes V , and the continuum (a ! 0) and large-volume
(V ! 1) limits must be taken.

The governing equations of QCD and their lattice counterparts have a variety of symmetries,
some that are highly non-trivial. The symmetries satisfied by ensembles of gauge fields are of par-
ticular interest in the context of the ML approaches studied here, as they place strong restrictions
on numerical operations that can be performed on lattice data to extract physically meaningful
results. In particular, lattice QCD is invariant under a local symmetry of the gauge fields known
as a gauge symmetry; this is an invariance under local multiplications of link variables by SU(3)
matrices

Uµ(x) ! U
0

µ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂) for all ⌦(x) 2 SU(3), (4)

referred to as a gauge transformation (note that the matrix ⌦(x) di↵ers at every spacetime point).
This symmetry is not apparent from the numerical representation of a QCD configuration, but

2 The spatial, L, and temporal, T , extents of the lattice geometry are often distinct.
3 Here, M† = (M⇤)T is the Hermitian conjugate. An SU(3) matrix can be specified by 8 real numbers, but typically
the redundant representation with 18 real numbers is used.

for all ⌦(x) 2 U(1)
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flow-based models at a range of parameters approaching
criticality, while without it, models of similar scale fail
to learn the distributions under the same training proce-
dure.

Flow-based sampling.— Flow-based generative models
allow sampling from an expressive family of distributions
by applying an invertible function f to samples U from
a fixed, simple prior distribution defined by a density
r(U) [51]. The resulting samples U 0 = f(U) are dis-
tributed according to a model density q(U 0). The invert-
ible function is constructed specifically to allow e�cient
evaluation of the Jacobian factor for any given sample,
so that the associated normalized probability density,

q(U 0) = q(f(U)) = r(U)

����det
@f(U)

@U

����
�1

, (1)

is returned with each sample drawn. This feature enables
training the flow model, i.e. optimizing the function f , by
minimizing the distance between the model probability
density q(U 0) and the desired density p(U 0) using a cho-
sen metric. Any deviation from the true distribution due
to an imperfect model can be corrected by a number of
techniques; in this work, we apply Metropolis indepen-
dence sampling [25].1

A powerful approach to defining a flexible invertible
function f is through composition of several coupling
layers, f := gm � · · · � g1. Coupling layers act on sam-
ples U by applying an analytically invertible transfor-
mation (such as a scaling) to a subset of the compo-
nents UA :=

�
U i : i 2 A

 
, where the superscript i in-

dexes components of the multi-dimensional sample U and
the set A indicates the components that are transformed.
The remaining (unmodified) components UB , defined by
UB = U \ UA, are given as input to a feed-forward neu-
ral network that parameterizes the transformation. This
variable splitting guarantees invertibility despite the use
of non-invertible feed-forward networks.

Gauge-invariant flows.— Lattice gauge theories can be
defined in terms of one gauge variable Uµ(x) per nearest-
neighbor link (x, x + µ̂) of the lattice. Samples thus live
in the compact manifold GNdV , where G is the mani-
fold of the gauge group, Nd is the spacetime dimension,
and V is the lattice volume. The physical distribution
p(U) is exactly invariant under a discrete translational
symmetry group with V elements and a continuous V -
dimensional gauge symmetry group, meaning that the
density associated with any transformed field configura-
tion eU is identical to that of the untransformed config-
uration, p(eU) = p(U). Under a gauge transformation,
links Uµ(x) are transformed by a group-valued field ⌦(x)

1 Reweighted observables can also be used [52, 53]. This is ef-
ficient when measurements of the action are more costly than
measurements of observables.

as

Uµ(x) ! eUµ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂). (2)

In the flow-based approach, symmetries correspond to
flat directions of the probability density that must be
reproduced by the model. Exactly encoding symme-
tries in machine learning models can improve training
and model quality compared with learning the symme-
tries over the course of training [24, 27, 54–58]. The
incorporation of translational symmetries into models is
possible using convolutional architectures, as studied for
example in Ref. [54]. To address gauge symmetry, one
could attempt to use a gauge-fixing procedure to select
a single configuration from each gauge-equivalent class,
leaving only physical degrees of freedom; however, the
only known gauge fixing procedures that preserve trans-
lational invariance are based on implicit di↵erential equa-
tion constraints [59], which do not have a straightforward
implementation in flows. Here, we instead introduce a
method to preserve exact gauge invariance in flow-based
models.

When a flow-based model is defined in terms of cou-
pling layers, its output distribution will be invariant un-
der a symmetry group if two conditions are met:

1. The prior distribution is symmetric.

2. Each coupling layer is equivariant under the sym-
metry, i.e. all transformations commute through
application of the coupling layer [54, 56, 60–62].

Choosing a prior distribution that is symmetric is typ-
ically straightforward, for example a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.— We construct an

explicitly gauge-equivariant and invertible coupling layer
g : GNdV

! GNdV by splitting the input variables
into subsets UA and UB . In terms of these sub-
sets, we define the action of the coupling layer to be
g(UA, UB) = (U 0A, UB), where link U i

2 UA is mapped
to

U 0i = h(U iSi
|Ii)Si†, (3)

in which h : G ! G is an invertible kernel which is explic-
itly parameterized by a set of gauge-invariant quantities
Ii constructed from the elements of UB . Here, Si is a
product of links such that U iSi forms a loop that starts
and ends at a common point x, and therefore transforms
under the gauge symmetry to ⌦(x) U i⌦†(x + µ̂) ⌦(x +
µ̂)Si⌦†(x) = ⌦(x) U iSi ⌦†(x). With this definition, the
coupling layer is gauge equivariant if the kernel satisfies

h(XWX†) = X h(W ) X†, 8X, W 2 G, (4)

Spacetime 
dimension

Lattice volume

Act on a subset of the variables in each layer

2

flow-based models at a range of parameters approaching
criticality, while without it, models of similar scale fail
to learn the distributions under the same training proce-
dure.

Flow-based sampling.— Flow-based generative models
allow sampling from an expressive family of distributions
by applying an invertible function f to samples U from
a fixed, simple prior distribution defined by a density
r(U) [51]. The resulting samples U 0 = f(U) are dis-
tributed according to a model density q(U 0). The invert-
ible function is constructed specifically to allow e�cient
evaluation of the Jacobian factor for any given sample,
so that the associated normalized probability density,

q(U 0) = q(f(U)) = r(U)
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is returned with each sample drawn. This feature enables
training the flow model, i.e. optimizing the function f , by
minimizing the distance between the model probability
density q(U 0) and the desired density p(U 0) using a cho-
sen metric. Any deviation from the true distribution due
to an imperfect model can be corrected by a number of
techniques; in this work, we apply Metropolis indepen-
dence sampling [25].1

A powerful approach to defining a flexible invertible
function f is through composition of several coupling
layers, f := gm � · · · � g1. Coupling layers act on sam-
ples U by applying an analytically invertible transfor-
mation (such as a scaling) to a subset of the compo-
nents UA :=
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, where the superscript i in-

dexes components of the multi-dimensional sample U and
the set A indicates the components that are transformed.
The remaining (unmodified) components UB , defined by
UB = U \ UA, are given as input to a feed-forward neu-
ral network that parameterizes the transformation. This
variable splitting guarantees invertibility despite the use
of non-invertible feed-forward networks.

Gauge-invariant flows.— Lattice gauge theories can be
defined in terms of one gauge variable Uµ(x) per nearest-
neighbor link (x, x + µ̂) of the lattice. Samples thus live
in the compact manifold GNdV , where G is the mani-
fold of the gauge group, Nd is the spacetime dimension,
and V is the lattice volume. The physical distribution
p(U) is exactly invariant under a discrete translational
symmetry group with V elements and a continuous V -
dimensional gauge symmetry group, meaning that the
density associated with any transformed field configura-
tion eU is identical to that of the untransformed config-
uration, p(eU) = p(U). Under a gauge transformation,
links Uµ(x) are transformed by a group-valued field ⌦(x)

1 Reweighted observables can also be used [52, 53]. This is ef-
ficient when measurements of the action are more costly than
measurements of observables.

as

Uµ(x) ! eUµ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂). (2)

In the flow-based approach, symmetries correspond to
flat directions of the probability density that must be
reproduced by the model. Exactly encoding symme-
tries in machine learning models can improve training
and model quality compared with learning the symme-
tries over the course of training [24, 27, 54–58]. The
incorporation of translational symmetries into models is
possible using convolutional architectures, as studied for
example in Ref. [54]. To address gauge symmetry, one
could attempt to use a gauge-fixing procedure to select
a single configuration from each gauge-equivalent class,
leaving only physical degrees of freedom; however, the
only known gauge fixing procedures that preserve trans-
lational invariance are based on implicit di↵erential equa-
tion constraints [59], which do not have a straightforward
implementation in flows. Here, we instead introduce a
method to preserve exact gauge invariance in flow-based
models.

When a flow-based model is defined in terms of cou-
pling layers, its output distribution will be invariant un-
der a symmetry group if two conditions are met:

1. The prior distribution is symmetric.

2. Each coupling layer is equivariant under the sym-
metry, i.e. all transformations commute through
application of the coupling layer [54, 56, 60–62].

Choosing a prior distribution that is symmetric is typ-
ically straightforward, for example a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.— We construct an

explicitly gauge-equivariant and invertible coupling layer
g : GNdV

! GNdV by splitting the input variables
into subsets UA and UB . In terms of these sub-
sets, we define the action of the coupling layer to be
g(UA, UB) = (U 0A, UB), where link U i

2 UA is mapped
to

U 0i = h(U iSi
|Ii)Si†, (3)

in which h : G ! G is an invertible kernel which is explic-
itly parameterized by a set of gauge-invariant quantities
Ii constructed from the elements of UB . Here, Si is a
product of links such that U iSi forms a loop that starts
and ends at a common point x, and therefore transforms
under the gauge symmetry to ⌦(x) U i⌦†(x + µ̂) ⌦(x +
µ̂)Si⌦†(x) = ⌦(x) U iSi ⌦†(x). With this definition, the
coupling layer is gauge equivariant if the kernel satisfies

h(XWX†) = X h(W ) X†, 8X, W 2 G, (4)
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flow-based models at a range of parameters approaching
criticality, while without it, models of similar scale fail
to learn the distributions under the same training proce-
dure.

Flow-based sampling.— Flow-based generative models
allow sampling from an expressive family of distributions
by applying an invertible function f to samples U from
a fixed, simple prior distribution defined by a density
r(U) [51]. The resulting samples U 0 = f(U) are dis-
tributed according to a model density q(U 0). The invert-
ible function is constructed specifically to allow e�cient
evaluation of the Jacobian factor for any given sample,
so that the associated normalized probability density,

q(U 0) = q(f(U)) = r(U)
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, (1)

is returned with each sample drawn. This feature enables
training the flow model, i.e. optimizing the function f , by
minimizing the distance between the model probability
density q(U 0) and the desired density p(U 0) using a cho-
sen metric. Any deviation from the true distribution due
to an imperfect model can be corrected by a number of
techniques; in this work, we apply Metropolis indepen-
dence sampling [25].1

A powerful approach to defining a flexible invertible
function f is through composition of several coupling
layers, f := gm � · · · � g1. Coupling layers act on sam-
ples U by applying an analytically invertible transfor-
mation (such as a scaling) to a subset of the compo-
nents UA :=

�
U i : i 2 A

 
, where the superscript i in-

dexes components of the multi-dimensional sample U and
the set A indicates the components that are transformed.
The remaining (unmodified) components UB , defined by
UB = U \ UA, are given as input to a feed-forward neu-
ral network that parameterizes the transformation. This
variable splitting guarantees invertibility despite the use
of non-invertible feed-forward networks.

Gauge-invariant flows.— Lattice gauge theories can be
defined in terms of one gauge variable Uµ(x) per nearest-
neighbor link (x, x + µ̂) of the lattice. Samples thus live
in the compact manifold GNdV , where G is the mani-
fold of the gauge group, Nd is the spacetime dimension,
and V is the lattice volume. The physical distribution
p(U) is exactly invariant under a discrete translational
symmetry group with V elements and a continuous V -
dimensional gauge symmetry group, meaning that the
density associated with any transformed field configura-
tion eU is identical to that of the untransformed config-
uration, p(eU) = p(U). Under a gauge transformation,
links Uµ(x) are transformed by a group-valued field ⌦(x)

1 Reweighted observables can also be used [52, 53]. This is ef-
ficient when measurements of the action are more costly than
measurements of observables.

as

Uµ(x) ! eUµ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂). (2)

In the flow-based approach, symmetries correspond to
flat directions of the probability density that must be
reproduced by the model. Exactly encoding symme-
tries in machine learning models can improve training
and model quality compared with learning the symme-
tries over the course of training [24, 27, 54–58]. The
incorporation of translational symmetries into models is
possible using convolutional architectures, as studied for
example in Ref. [54]. To address gauge symmetry, one
could attempt to use a gauge-fixing procedure to select
a single configuration from each gauge-equivalent class,
leaving only physical degrees of freedom; however, the
only known gauge fixing procedures that preserve trans-
lational invariance are based on implicit di↵erential equa-
tion constraints [59], which do not have a straightforward
implementation in flows. Here, we instead introduce a
method to preserve exact gauge invariance in flow-based
models.

When a flow-based model is defined in terms of cou-
pling layers, its output distribution will be invariant un-
der a symmetry group if two conditions are met:

1. The prior distribution is symmetric.

2. Each coupling layer is equivariant under the sym-
metry, i.e. all transformations commute through
application of the coupling layer [54, 56, 60–62].

Choosing a prior distribution that is symmetric is typ-
ically straightforward, for example a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.— We construct an

explicitly gauge-equivariant and invertible coupling layer
g : GNdV

! GNdV by splitting the input variables
into subsets UA and UB . In terms of these sub-
sets, we define the action of the coupling layer to be
g(UA, UB) = (U 0A, UB), where link U i

2 UA is mapped
to

U 0i = h(U iSi
|Ii)Si†, (3)

in which h : G ! G is an invertible kernel which is explic-
itly parameterized by a set of gauge-invariant quantities
Ii constructed from the elements of UB . Here, Si is a
product of links such that U iSi forms a loop that starts
and ends at a common point x, and therefore transforms
under the gauge symmetry to ⌦(x) U i⌦†(x + µ̂) ⌦(x +
µ̂)Si⌦†(x) = ⌦(x) U iSi ⌦†(x). With this definition, the
coupling layer is gauge equivariant if the kernel satisfies

h(XWX†) = X h(W ) X†, 8X, W 2 G, (4)
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flow-based models at a range of parameters approaching
criticality, while without it, models of similar scale fail
to learn the distributions under the same training proce-
dure.

Flow-based sampling.— Flow-based generative models
allow sampling from an expressive family of distributions
by applying an invertible function f to samples U from
a fixed, simple prior distribution defined by a density
r(U) [51]. The resulting samples U 0 = f(U) are dis-
tributed according to a model density q(U 0). The invert-
ible function is constructed specifically to allow e�cient
evaluation of the Jacobian factor for any given sample,
so that the associated normalized probability density,

q(U 0) = q(f(U)) = r(U)
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is returned with each sample drawn. This feature enables
training the flow model, i.e. optimizing the function f , by
minimizing the distance between the model probability
density q(U 0) and the desired density p(U 0) using a cho-
sen metric. Any deviation from the true distribution due
to an imperfect model can be corrected by a number of
techniques; in this work, we apply Metropolis indepen-
dence sampling [25].1

A powerful approach to defining a flexible invertible
function f is through composition of several coupling
layers, f := gm � · · · � g1. Coupling layers act on sam-
ples U by applying an analytically invertible transfor-
mation (such as a scaling) to a subset of the compo-
nents UA :=
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U i : i 2 A

 
, where the superscript i in-

dexes components of the multi-dimensional sample U and
the set A indicates the components that are transformed.
The remaining (unmodified) components UB , defined by
UB = U \ UA, are given as input to a feed-forward neu-
ral network that parameterizes the transformation. This
variable splitting guarantees invertibility despite the use
of non-invertible feed-forward networks.

Gauge-invariant flows.— Lattice gauge theories can be
defined in terms of one gauge variable Uµ(x) per nearest-
neighbor link (x, x + µ̂) of the lattice. Samples thus live
in the compact manifold GNdV , where G is the mani-
fold of the gauge group, Nd is the spacetime dimension,
and V is the lattice volume. The physical distribution
p(U) is exactly invariant under a discrete translational
symmetry group with V elements and a continuous V -
dimensional gauge symmetry group, meaning that the
density associated with any transformed field configura-
tion eU is identical to that of the untransformed config-
uration, p(eU) = p(U). Under a gauge transformation,
links Uµ(x) are transformed by a group-valued field ⌦(x)

1 Reweighted observables can also be used [52, 53]. This is ef-
ficient when measurements of the action are more costly than
measurements of observables.

as

Uµ(x) ! eUµ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂). (2)

In the flow-based approach, symmetries correspond to
flat directions of the probability density that must be
reproduced by the model. Exactly encoding symme-
tries in machine learning models can improve training
and model quality compared with learning the symme-
tries over the course of training [24, 27, 54–58]. The
incorporation of translational symmetries into models is
possible using convolutional architectures, as studied for
example in Ref. [54]. To address gauge symmetry, one
could attempt to use a gauge-fixing procedure to select
a single configuration from each gauge-equivalent class,
leaving only physical degrees of freedom; however, the
only known gauge fixing procedures that preserve trans-
lational invariance are based on implicit di↵erential equa-
tion constraints [59], which do not have a straightforward
implementation in flows. Here, we instead introduce a
method to preserve exact gauge invariance in flow-based
models.

When a flow-based model is defined in terms of cou-
pling layers, its output distribution will be invariant un-
der a symmetry group if two conditions are met:

1. The prior distribution is symmetric.

2. Each coupling layer is equivariant under the sym-
metry, i.e. all transformations commute through
application of the coupling layer [54, 56, 60–62].

Choosing a prior distribution that is symmetric is typ-
ically straightforward, for example a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.— We construct an

explicitly gauge-equivariant and invertible coupling layer
g : GNdV

! GNdV by splitting the input variables
into subsets UA and UB . In terms of these sub-
sets, we define the action of the coupling layer to be
g(UA, UB) = (U 0A, UB), where link U i

2 UA is mapped
to

U 0i = h(U iSi
|Ii)Si†, (3)

in which h : G ! G is an invertible kernel which is explic-
itly parameterized by a set of gauge-invariant quantities
Ii constructed from the elements of UB . Here, Si is a
product of links such that U iSi forms a loop that starts
and ends at a common point x, and therefore transforms
under the gauge symmetry to ⌦(x) U i⌦†(x + µ̂) ⌦(x +
µ̂)Si⌦†(x) = ⌦(x) U iSi ⌦†(x). With this definition, the
coupling layer is gauge equivariant if the kernel satisfies

h(XWX†) = X h(W ) X†, 8X, W 2 G, (4)

2

flow-based models at a range of parameters approaching
criticality, while without it, models of similar scale fail
to learn the distributions under the same training proce-
dure.

Flow-based sampling.— Flow-based generative models
allow sampling from an expressive family of distributions
by applying an invertible function f to samples U from
a fixed, simple prior distribution defined by a density
r(U) [51]. The resulting samples U 0 = f(U) are dis-
tributed according to a model density q(U 0). The invert-
ible function is constructed specifically to allow e�cient
evaluation of the Jacobian factor for any given sample,
so that the associated normalized probability density,

q(U 0) = q(f(U)) = r(U)
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is returned with each sample drawn. This feature enables
training the flow model, i.e. optimizing the function f , by
minimizing the distance between the model probability
density q(U 0) and the desired density p(U 0) using a cho-
sen metric. Any deviation from the true distribution due
to an imperfect model can be corrected by a number of
techniques; in this work, we apply Metropolis indepen-
dence sampling [25].1

A powerful approach to defining a flexible invertible
function f is through composition of several coupling
layers, f := gm � · · · � g1. Coupling layers act on sam-
ples U by applying an analytically invertible transfor-
mation (such as a scaling) to a subset of the compo-
nents UA :=

�
U i : i 2 A

 
, where the superscript i in-

dexes components of the multi-dimensional sample U and
the set A indicates the components that are transformed.
The remaining (unmodified) components UB , defined by
UB = U \ UA, are given as input to a feed-forward neu-
ral network that parameterizes the transformation. This
variable splitting guarantees invertibility despite the use
of non-invertible feed-forward networks.

Gauge-invariant flows.— Lattice gauge theories can be
defined in terms of one gauge variable Uµ(x) per nearest-
neighbor link (x, x + µ̂) of the lattice. Samples thus live
in the compact manifold GNdV , where G is the mani-
fold of the gauge group, Nd is the spacetime dimension,
and V is the lattice volume. The physical distribution
p(U) is exactly invariant under a discrete translational
symmetry group with V elements and a continuous V -
dimensional gauge symmetry group, meaning that the
density associated with any transformed field configura-
tion eU is identical to that of the untransformed config-
uration, p(eU) = p(U). Under a gauge transformation,
links Uµ(x) are transformed by a group-valued field ⌦(x)

1 Reweighted observables can also be used [52, 53]. This is ef-
ficient when measurements of the action are more costly than
measurements of observables.

as

Uµ(x) ! eUµ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂). (2)

In the flow-based approach, symmetries correspond to
flat directions of the probability density that must be
reproduced by the model. Exactly encoding symme-
tries in machine learning models can improve training
and model quality compared with learning the symme-
tries over the course of training [24, 27, 54–58]. The
incorporation of translational symmetries into models is
possible using convolutional architectures, as studied for
example in Ref. [54]. To address gauge symmetry, one
could attempt to use a gauge-fixing procedure to select
a single configuration from each gauge-equivalent class,
leaving only physical degrees of freedom; however, the
only known gauge fixing procedures that preserve trans-
lational invariance are based on implicit di↵erential equa-
tion constraints [59], which do not have a straightforward
implementation in flows. Here, we instead introduce a
method to preserve exact gauge invariance in flow-based
models.

When a flow-based model is defined in terms of cou-
pling layers, its output distribution will be invariant un-
der a symmetry group if two conditions are met:

1. The prior distribution is symmetric.

2. Each coupling layer is equivariant under the sym-
metry, i.e. all transformations commute through
application of the coupling layer [54, 56, 60–62].

Choosing a prior distribution that is symmetric is typ-
ically straightforward, for example a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.— We construct an

explicitly gauge-equivariant and invertible coupling layer
g : GNdV

! GNdV by splitting the input variables
into subsets UA and UB . In terms of these sub-
sets, we define the action of the coupling layer to be
g(UA, UB) = (U 0A, UB), where link U i

2 UA is mapped
to

U 0i = h(U iSi
|Ii)Si†, (3)

in which h : G ! G is an invertible kernel which is explic-
itly parameterized by a set of gauge-invariant quantities
Ii constructed from the elements of UB . Here, Si is a
product of links such that U iSi forms a loop that starts
and ends at a common point x, and therefore transforms
under the gauge symmetry to ⌦(x) U i⌦†(x + µ̂) ⌦(x +
µ̂)Si⌦†(x) = ⌦(x) U iSi ⌦†(x). With this definition, the
coupling layer is gauge equivariant if the kernel satisfies

h(XWX†) = X h(W ) X†, 8X, W 2 G, (4)
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flow-based models at a range of parameters approaching
criticality, while without it, models of similar scale fail
to learn the distributions under the same training proce-
dure.

Flow-based sampling.— Flow-based generative models
allow sampling from an expressive family of distributions
by applying an invertible function f to samples U from
a fixed, simple prior distribution defined by a density
r(U) [51]. The resulting samples U 0 = f(U) are dis-
tributed according to a model density q(U 0). The invert-
ible function is constructed specifically to allow e�cient
evaluation of the Jacobian factor for any given sample,
so that the associated normalized probability density,

q(U 0) = q(f(U)) = r(U)
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is returned with each sample drawn. This feature enables
training the flow model, i.e. optimizing the function f , by
minimizing the distance between the model probability
density q(U 0) and the desired density p(U 0) using a cho-
sen metric. Any deviation from the true distribution due
to an imperfect model can be corrected by a number of
techniques; in this work, we apply Metropolis indepen-
dence sampling [25].1

A powerful approach to defining a flexible invertible
function f is through composition of several coupling
layers, f := gm � · · · � g1. Coupling layers act on sam-
ples U by applying an analytically invertible transfor-
mation (such as a scaling) to a subset of the compo-
nents UA :=

�
U i : i 2 A

 
, where the superscript i in-

dexes components of the multi-dimensional sample U and
the set A indicates the components that are transformed.
The remaining (unmodified) components UB , defined by
UB = U \ UA, are given as input to a feed-forward neu-
ral network that parameterizes the transformation. This
variable splitting guarantees invertibility despite the use
of non-invertible feed-forward networks.

Gauge-invariant flows.— Lattice gauge theories can be
defined in terms of one gauge variable Uµ(x) per nearest-
neighbor link (x, x + µ̂) of the lattice. Samples thus live
in the compact manifold GNdV , where G is the mani-
fold of the gauge group, Nd is the spacetime dimension,
and V is the lattice volume. The physical distribution
p(U) is exactly invariant under a discrete translational
symmetry group with V elements and a continuous V -
dimensional gauge symmetry group, meaning that the
density associated with any transformed field configura-
tion eU is identical to that of the untransformed config-
uration, p(eU) = p(U). Under a gauge transformation,
links Uµ(x) are transformed by a group-valued field ⌦(x)

1 Reweighted observables can also be used [52, 53]. This is ef-
ficient when measurements of the action are more costly than
measurements of observables.

as

Uµ(x) ! eUµ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂). (2)

In the flow-based approach, symmetries correspond to
flat directions of the probability density that must be
reproduced by the model. Exactly encoding symme-
tries in machine learning models can improve training
and model quality compared with learning the symme-
tries over the course of training [24, 27, 54–58]. The
incorporation of translational symmetries into models is
possible using convolutional architectures, as studied for
example in Ref. [54]. To address gauge symmetry, one
could attempt to use a gauge-fixing procedure to select
a single configuration from each gauge-equivalent class,
leaving only physical degrees of freedom; however, the
only known gauge fixing procedures that preserve trans-
lational invariance are based on implicit di↵erential equa-
tion constraints [59], which do not have a straightforward
implementation in flows. Here, we instead introduce a
method to preserve exact gauge invariance in flow-based
models.

When a flow-based model is defined in terms of cou-
pling layers, its output distribution will be invariant un-
der a symmetry group if two conditions are met:

1. The prior distribution is symmetric.

2. Each coupling layer is equivariant under the sym-
metry, i.e. all transformations commute through
application of the coupling layer [54, 56, 60–62].

Choosing a prior distribution that is symmetric is typ-
ically straightforward, for example a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.— We construct an

explicitly gauge-equivariant and invertible coupling layer
g : GNdV

! GNdV by splitting the input variables
into subsets UA and UB . In terms of these sub-
sets, we define the action of the coupling layer to be
g(UA, UB) = (U 0A, UB), where link U i

2 UA is mapped
to

U 0i = h(U iSi
|Ii)Si†, (3)

in which h : G ! G is an invertible kernel which is explic-
itly parameterized by a set of gauge-invariant quantities
Ii constructed from the elements of UB . Here, Si is a
product of links such that U iSi forms a loop that starts
and ends at a common point x, and therefore transforms
under the gauge symmetry to ⌦(x) U i⌦†(x + µ̂) ⌦(x +
µ̂)Si⌦†(x) = ⌦(x) U iSi ⌦†(x). With this definition, the
coupling layer is gauge equivariant if the kernel satisfies

h(XWX†) = X h(W ) X†, 8X, W 2 G, (4)
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flow-based models at a range of parameters approaching
criticality, while without it, models of similar scale fail
to learn the distributions under the same training proce-
dure.

Flow-based sampling.— Flow-based generative models
allow sampling from an expressive family of distributions
by applying an invertible function f to samples U from
a fixed, simple prior distribution defined by a density
r(U) [51]. The resulting samples U 0 = f(U) are dis-
tributed according to a model density q(U 0). The invert-
ible function is constructed specifically to allow e�cient
evaluation of the Jacobian factor for any given sample,
so that the associated normalized probability density,

q(U 0) = q(f(U)) = r(U)
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is returned with each sample drawn. This feature enables
training the flow model, i.e. optimizing the function f , by
minimizing the distance between the model probability
density q(U 0) and the desired density p(U 0) using a cho-
sen metric. Any deviation from the true distribution due
to an imperfect model can be corrected by a number of
techniques; in this work, we apply Metropolis indepen-
dence sampling [25].1

A powerful approach to defining a flexible invertible
function f is through composition of several coupling
layers, f := gm � · · · � g1. Coupling layers act on sam-
ples U by applying an analytically invertible transfor-
mation (such as a scaling) to a subset of the compo-
nents UA :=
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, where the superscript i in-

dexes components of the multi-dimensional sample U and
the set A indicates the components that are transformed.
The remaining (unmodified) components UB , defined by
UB = U \ UA, are given as input to a feed-forward neu-
ral network that parameterizes the transformation. This
variable splitting guarantees invertibility despite the use
of non-invertible feed-forward networks.

Gauge-invariant flows.— Lattice gauge theories can be
defined in terms of one gauge variable Uµ(x) per nearest-
neighbor link (x, x + µ̂) of the lattice. Samples thus live
in the compact manifold GNdV , where G is the mani-
fold of the gauge group, Nd is the spacetime dimension,
and V is the lattice volume. The physical distribution
p(U) is exactly invariant under a discrete translational
symmetry group with V elements and a continuous V -
dimensional gauge symmetry group, meaning that the
density associated with any transformed field configura-
tion eU is identical to that of the untransformed config-
uration, p(eU) = p(U). Under a gauge transformation,
links Uµ(x) are transformed by a group-valued field ⌦(x)

1 Reweighted observables can also be used [52, 53]. This is ef-
ficient when measurements of the action are more costly than
measurements of observables.

as

Uµ(x) ! eUµ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂). (2)

In the flow-based approach, symmetries correspond to
flat directions of the probability density that must be
reproduced by the model. Exactly encoding symme-
tries in machine learning models can improve training
and model quality compared with learning the symme-
tries over the course of training [24, 27, 54–58]. The
incorporation of translational symmetries into models is
possible using convolutional architectures, as studied for
example in Ref. [54]. To address gauge symmetry, one
could attempt to use a gauge-fixing procedure to select
a single configuration from each gauge-equivalent class,
leaving only physical degrees of freedom; however, the
only known gauge fixing procedures that preserve trans-
lational invariance are based on implicit di↵erential equa-
tion constraints [59], which do not have a straightforward
implementation in flows. Here, we instead introduce a
method to preserve exact gauge invariance in flow-based
models.

When a flow-based model is defined in terms of cou-
pling layers, its output distribution will be invariant un-
der a symmetry group if two conditions are met:

1. The prior distribution is symmetric.

2. Each coupling layer is equivariant under the sym-
metry, i.e. all transformations commute through
application of the coupling layer [54, 56, 60–62].

Choosing a prior distribution that is symmetric is typ-
ically straightforward, for example a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.— We construct an

explicitly gauge-equivariant and invertible coupling layer
g : GNdV

! GNdV by splitting the input variables
into subsets UA and UB . In terms of these sub-
sets, we define the action of the coupling layer to be
g(UA, UB) = (U 0A, UB), where link U i

2 UA is mapped
to

U 0i = h(U iSi
|Ii)Si†, (3)

in which h : G ! G is an invertible kernel which is explic-
itly parameterized by a set of gauge-invariant quantities
Ii constructed from the elements of UB . Here, Si is a
product of links such that U iSi forms a loop that starts
and ends at a common point x, and therefore transforms
under the gauge symmetry to ⌦(x) U i⌦†(x + µ̂) ⌦(x +
µ̂)Si⌦†(x) = ⌦(x) U iSi ⌦†(x). With this definition, the
coupling layer is gauge equivariant if the kernel satisfies
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FIG. 2. An example of a variable splitting based on a tiled
4 ⇥ 1 pattern with an actively updated link U i ⌘ Uµ(x) and
1 ⇥ 1 loop U iSi ⌘ Pµ⌫(x) located at x, a passively updated
1⇥ 1 loop at ex = x� ⌫̂, and two frozen traced 1⇥ 1 loops at
x+ ⌫̂ and x+ 2⌫̂ included in the set Ii.

which implies that U 0i
! eU 0i transforms according to

Eq. (2),

eU 0i = h
�
⌦(x) U iSi ⌦†(x)|Ii

�
⌦(x)Si†⌦†(x + µ̂)

= ⌦(x)U 0i⌦†(x + µ̂).
(5)

To ensure invertibility, the product of links Si must not
contain any links in UA.

For an Abelian group, the transformation property
in Eq. (4) is trivially satisfied by any kernel. In
the U(1) gauge theory considered below, we there-
fore define the kernel using invertible flows parame-
terized by neural networks. For non-Abelian theo-
ries, it has been shown that it is possible to con-
struct invertible functions on spheres [63] and surjec-
tive functions on general Lie groups [64]. If these ap-
proaches can be generalized to produce invertible func-
tions with convergent power expansions, they will sat-
isfy the necessary kernel transformation property, since
h(XWX†) =

P
n ↵n(XWX†)n = X h(W ) X†.

An example of a variable splitting suitable for both
Abelian and non-Abelian gauge theories is given by the
pattern depicted in Fig. 2. In this example, the set of
updated links UA consists of vertical links spaced by 4
sites, and the products U iSi are 1 ⇥ 1 loops adjacent to
each U i. This is su�ciently sparse such that every Si

is independent of all updated links in UA, and a non-
trivial set of invariants Ii (e.g. all traced 1⇥ 1 loops that
are not adjacent to updated links) can be constructed
to parametrize the transformation. Composing coupling
layers using rotations and o↵sets of the pattern allows all
links to be updated.2

2 For example, composing 8 such layers is su�cient to update all
links in 2D.

Using gauge-equivariant coupling layers constructed in
terms of kernels generalizes the “trivializing map” pro-
posed in Ref. [65]. There, repeatedly applying a spe-
cific kernel based on gradients of the action theoretically
trivializes a gauge theory, i.e. maps the Euclidean time
distribution to a uniform one. The family of gauge equiv-
ariant flows defined here includes the trivializing map in
the limit of a large number of coupling layers and arbi-
trarily expressive kernel, indicating that in this limiting
case exact sampling as described in Ref. [65] is possible.
However, the approach presented here allows for more
general and inexpensive parametrizations of h. These
can be optimized to produce flows that similarly trivial-
ize the theory, and which may have a lower cost of evalu-
ation than implementations of the analytical trivializing
map [66].
Application to U(1) gauge theory.— Gauge theory with

a U(1) gauge group defined in two spacetime dimensions
is the quenched limit of 1 + 1D electrodynamics, i.e. the
Schwinger model [67]. The full Schwinger model repro-
duces many features of quantum chromodynamics (con-
finement, an axial anomaly, topology, and chiral symme-
try breaking) while being analytically tractable. Even in
the quenched limit, the well-defined gauge field topology
results in severe critical slowing down of MCMC meth-
ods for sampling lattice discretizations of the model as
the coupling is taken to criticality. We consider the lat-
tice discretization given by the Wilson gauge action [68],

S(U) := ��
X

x

Re P (x), (6)

where P (x) is the plaquette at x defined in terms of link
variables Uµ(x) 2 U(1),

P (x) := U0(x)U1(x + 0̂)U†

0 (x + 1̂)U†

1 (x), (7)

and x = (x0, x1) runs over coordinates in an L⇥L square
lattice with periodic boundary conditions. Physical infor-
mation may be extracted from the model by considering
expectation values of observables O under the Euclidean
time path integral,

hOi :=
1

Z

Z
DU O(U)e�S(U), (8)

where
R

DU denotes integration over the product of
Haar measures for each link, and Z =

R
DU e�S(U). In

this study, three key observables were considered:

1. Expectation values of powers of plaquettes.

2. Expectation values of ` ⇥ ` Wilson loops W`⇥` =Q
x2`⇥` P (x).

3. Topological susceptibility �Q = hQ2/V i, where
topological charge Q := 1

2⇡

P
x arg (P (x)) is de-

fined in terms of plaquette phase in the principal
interval, arg (P (x)) 2 [�⇡, ⇡].

2

flow-based models at a range of parameters approaching
criticality, while without it, models of similar scale fail
to learn the distributions under the same training proce-
dure.

Flow-based sampling.— Flow-based generative models
allow sampling from an expressive family of distributions
by applying an invertible function f to samples U from
a fixed, simple prior distribution defined by a density
r(U) [51]. The resulting samples U 0 = f(U) are dis-
tributed according to a model density q(U 0). The invert-
ible function is constructed specifically to allow e�cient
evaluation of the Jacobian factor for any given sample,
so that the associated normalized probability density,

q(U 0) = q(f(U)) = r(U)

����det
@f(U)

@U

����
�1

, (1)

is returned with each sample drawn. This feature enables
training the flow model, i.e. optimizing the function f , by
minimizing the distance between the model probability
density q(U 0) and the desired density p(U 0) using a cho-
sen metric. Any deviation from the true distribution due
to an imperfect model can be corrected by a number of
techniques; in this work, we apply Metropolis indepen-
dence sampling [25].1

A powerful approach to defining a flexible invertible
function f is through composition of several coupling
layers, f := gm � · · · � g1. Coupling layers act on sam-
ples U by applying an analytically invertible transfor-
mation (such as a scaling) to a subset of the compo-
nents UA :=

�
U i : i 2 A

 
, where the superscript i in-

dexes components of the multi-dimensional sample U and
the set A indicates the components that are transformed.
The remaining (unmodified) components UB , defined by
UB = U \ UA, are given as input to a feed-forward neu-
ral network that parameterizes the transformation. This
variable splitting guarantees invertibility despite the use
of non-invertible feed-forward networks.

Gauge-invariant flows.— Lattice gauge theories can be
defined in terms of one gauge variable Uµ(x) per nearest-
neighbor link (x, x + µ̂) of the lattice. Samples thus live
in the compact manifold GNdV , where G is the mani-
fold of the gauge group, Nd is the spacetime dimension,
and V is the lattice volume. The physical distribution
p(U) is exactly invariant under a discrete translational
symmetry group with V elements and a continuous V -
dimensional gauge symmetry group, meaning that the
density associated with any transformed field configura-
tion eU is identical to that of the untransformed config-
uration, p(eU) = p(U). Under a gauge transformation,
links Uµ(x) are transformed by a group-valued field ⌦(x)

1 Reweighted observables can also be used [52, 53]. This is ef-
ficient when measurements of the action are more costly than
measurements of observables.

as

Uµ(x) ! eUµ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂). (2)

In the flow-based approach, symmetries correspond to
flat directions of the probability density that must be
reproduced by the model. Exactly encoding symme-
tries in machine learning models can improve training
and model quality compared with learning the symme-
tries over the course of training [24, 27, 54–58]. The
incorporation of translational symmetries into models is
possible using convolutional architectures, as studied for
example in Ref. [54]. To address gauge symmetry, one
could attempt to use a gauge-fixing procedure to select
a single configuration from each gauge-equivalent class,
leaving only physical degrees of freedom; however, the
only known gauge fixing procedures that preserve trans-
lational invariance are based on implicit di↵erential equa-
tion constraints [59], which do not have a straightforward
implementation in flows. Here, we instead introduce a
method to preserve exact gauge invariance in flow-based
models.

When a flow-based model is defined in terms of cou-
pling layers, its output distribution will be invariant un-
der a symmetry group if two conditions are met:

1. The prior distribution is symmetric.

2. Each coupling layer is equivariant under the sym-
metry, i.e. all transformations commute through
application of the coupling layer [54, 56, 60–62].

Choosing a prior distribution that is symmetric is typ-
ically straightforward, for example a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.— We construct an

explicitly gauge-equivariant and invertible coupling layer
g : GNdV

! GNdV by splitting the input variables
into subsets UA and UB . In terms of these sub-
sets, we define the action of the coupling layer to be
g(UA, UB) = (U 0A, UB), where link U i

2 UA is mapped
to

U 0i = h(U iSi
|Ii)Si†, (3)

in which h : G ! G is an invertible kernel which is explic-
itly parameterized by a set of gauge-invariant quantities
Ii constructed from the elements of UB . Here, Si is a
product of links such that U iSi forms a loop that starts
and ends at a common point x, and therefore transforms
under the gauge symmetry to ⌦(x) U i⌦†(x + µ̂) ⌦(x +
µ̂)Si⌦†(x) = ⌦(x) U iSi ⌦†(x). With this definition, the
coupling layer is gauge equivariant if the kernel satisfies

h(XWX†) = X h(W ) X†, 8X, W 2 G, (4)

Loop that starts 
and ends at 
same point

Gauge-invariant 
quantities constructed 
from elements of       .
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by applying an invertible function f to samples U from
a fixed, simple prior distribution defined by a density
r(U) [51]. The resulting samples U 0 = f(U) are dis-
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so that the associated normalized probability density,

q(U 0) = q(f(U)) = r(U)

����det
@f(U)

@U

����
�1

, (1)

is returned with each sample drawn. This feature enables
training the flow model, i.e. optimizing the function f , by
minimizing the distance between the model probability
density q(U 0) and the desired density p(U 0) using a cho-
sen metric. Any deviation from the true distribution due
to an imperfect model can be corrected by a number of
techniques; in this work, we apply Metropolis indepen-
dence sampling [25].1

A powerful approach to defining a flexible invertible
function f is through composition of several coupling
layers, f := gm � · · · � g1. Coupling layers act on sam-
ples U by applying an analytically invertible transfor-
mation (such as a scaling) to a subset of the compo-
nents UA :=
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, where the superscript i in-

dexes components of the multi-dimensional sample U and
the set A indicates the components that are transformed.
The remaining (unmodified) components UB , defined by
UB = U \ UA, are given as input to a feed-forward neu-
ral network that parameterizes the transformation. This
variable splitting guarantees invertibility despite the use
of non-invertible feed-forward networks.

Gauge-invariant flows.— Lattice gauge theories can be
defined in terms of one gauge variable Uµ(x) per nearest-
neighbor link (x, x + µ̂) of the lattice. Samples thus live
in the compact manifold GNdV , where G is the mani-
fold of the gauge group, Nd is the spacetime dimension,
and V is the lattice volume. The physical distribution
p(U) is exactly invariant under a discrete translational
symmetry group with V elements and a continuous V -
dimensional gauge symmetry group, meaning that the
density associated with any transformed field configura-
tion eU is identical to that of the untransformed config-
uration, p(eU) = p(U). Under a gauge transformation,
links Uµ(x) are transformed by a group-valued field ⌦(x)

1 Reweighted observables can also be used [52, 53]. This is ef-
ficient when measurements of the action are more costly than
measurements of observables.

as

Uµ(x) ! eUµ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂). (2)

In the flow-based approach, symmetries correspond to
flat directions of the probability density that must be
reproduced by the model. Exactly encoding symme-
tries in machine learning models can improve training
and model quality compared with learning the symme-
tries over the course of training [24, 27, 54–58]. The
incorporation of translational symmetries into models is
possible using convolutional architectures, as studied for
example in Ref. [54]. To address gauge symmetry, one
could attempt to use a gauge-fixing procedure to select
a single configuration from each gauge-equivalent class,
leaving only physical degrees of freedom; however, the
only known gauge fixing procedures that preserve trans-
lational invariance are based on implicit di↵erential equa-
tion constraints [59], which do not have a straightforward
implementation in flows. Here, we instead introduce a
method to preserve exact gauge invariance in flow-based
models.

When a flow-based model is defined in terms of cou-
pling layers, its output distribution will be invariant un-
der a symmetry group if two conditions are met:

1. The prior distribution is symmetric.

2. Each coupling layer is equivariant under the sym-
metry, i.e. all transformations commute through
application of the coupling layer [54, 56, 60–62].

Choosing a prior distribution that is symmetric is typ-
ically straightforward, for example a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.— We construct an

explicitly gauge-equivariant and invertible coupling layer
g : GNdV

! GNdV by splitting the input variables
into subsets UA and UB . In terms of these sub-
sets, we define the action of the coupling layer to be
g(UA, UB) = (U 0A, UB), where link U i

2 UA is mapped
to

U 0i = h(U iSi
|Ii)Si†, (3)

in which h : G ! G is an invertible kernel which is explic-
itly parameterized by a set of gauge-invariant quantities
Ii constructed from the elements of UB . Here, Si is a
product of links such that U iSi forms a loop that starts
and ends at a common point x, and therefore transforms
under the gauge symmetry to ⌦(x) U i⌦†(x + µ̂) ⌦(x +
µ̂)Si⌦†(x) = ⌦(x) U iSi ⌦†(x). With this definition, the
coupling layer is gauge equivariant if the kernel satisfies

h(XWX†) = X h(W ) X†, 8X, W 2 G, (4)
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FIG. 2. An example of a variable splitting based on a tiled
4 ⇥ 1 pattern with an actively updated link U i ⌘ Uµ(x) and
1 ⇥ 1 loop U iSi ⌘ Pµ⌫(x) located at x, a passively updated
1⇥ 1 loop at ex = x� ⌫̂, and two frozen traced 1⇥ 1 loops at
x+ ⌫̂ and x+ 2⌫̂ included in the set Ii.

which implies that U 0i
! eU 0i transforms according to

Eq. (2),

eU 0i = h
�
⌦(x) U iSi ⌦†(x)|Ii

�
⌦(x)Si†⌦†(x + µ̂)

= ⌦(x)U 0i⌦†(x + µ̂).
(5)

To ensure invertibility, the product of links Si must not
contain any links in UA.

For an Abelian group, the transformation property
in Eq. (4) is trivially satisfied by any kernel. In
the U(1) gauge theory considered below, we there-
fore define the kernel using invertible flows parame-
terized by neural networks. For non-Abelian theo-
ries, it has been shown that it is possible to con-
struct invertible functions on spheres [63] and surjec-
tive functions on general Lie groups [64]. If these ap-
proaches can be generalized to produce invertible func-
tions with convergent power expansions, they will sat-
isfy the necessary kernel transformation property, since
h(XWX†) =

P
n ↵n(XWX†)n = X h(W ) X†.

An example of a variable splitting suitable for both
Abelian and non-Abelian gauge theories is given by the
pattern depicted in Fig. 2. In this example, the set of
updated links UA consists of vertical links spaced by 4
sites, and the products U iSi are 1 ⇥ 1 loops adjacent to
each U i. This is su�ciently sparse such that every Si

is independent of all updated links in UA, and a non-
trivial set of invariants Ii (e.g. all traced 1⇥ 1 loops that
are not adjacent to updated links) can be constructed
to parametrize the transformation. Composing coupling
layers using rotations and o↵sets of the pattern allows all
links to be updated.2

2 For example, composing 8 such layers is su�cient to update all
links in 2D.

Using gauge-equivariant coupling layers constructed in
terms of kernels generalizes the “trivializing map” pro-
posed in Ref. [65]. There, repeatedly applying a spe-
cific kernel based on gradients of the action theoretically
trivializes a gauge theory, i.e. maps the Euclidean time
distribution to a uniform one. The family of gauge equiv-
ariant flows defined here includes the trivializing map in
the limit of a large number of coupling layers and arbi-
trarily expressive kernel, indicating that in this limiting
case exact sampling as described in Ref. [65] is possible.
However, the approach presented here allows for more
general and inexpensive parametrizations of h. These
can be optimized to produce flows that similarly trivial-
ize the theory, and which may have a lower cost of evalu-
ation than implementations of the analytical trivializing
map [66].
Application to U(1) gauge theory.— Gauge theory with

a U(1) gauge group defined in two spacetime dimensions
is the quenched limit of 1 + 1D electrodynamics, i.e. the
Schwinger model [67]. The full Schwinger model repro-
duces many features of quantum chromodynamics (con-
finement, an axial anomaly, topology, and chiral symme-
try breaking) while being analytically tractable. Even in
the quenched limit, the well-defined gauge field topology
results in severe critical slowing down of MCMC meth-
ods for sampling lattice discretizations of the model as
the coupling is taken to criticality. We consider the lat-
tice discretization given by the Wilson gauge action [68],

S(U) := ��
X

x

Re P (x), (6)

where P (x) is the plaquette at x defined in terms of link
variables Uµ(x) 2 U(1),

P (x) := U0(x)U1(x + 0̂)U†

0 (x + 1̂)U†

1 (x), (7)

and x = (x0, x1) runs over coordinates in an L⇥L square
lattice with periodic boundary conditions. Physical infor-
mation may be extracted from the model by considering
expectation values of observables O under the Euclidean
time path integral,

hOi :=
1

Z

Z
DU O(U)e�S(U), (8)

where
R

DU denotes integration over the product of
Haar measures for each link, and Z =

R
DU e�S(U). In

this study, three key observables were considered:

1. Expectation values of powers of plaquettes.

2. Expectation values of ` ⇥ ` Wilson loops W`⇥` =Q
x2`⇥` P (x).

3. Topological susceptibility �Q = hQ2/V i, where
topological charge Q := 1

2⇡

P
x arg (P (x)) is de-

fined in terms of plaquette phase in the principal
interval, arg (P (x)) 2 [�⇡, ⇡].

2

flow-based models at a range of parameters approaching
criticality, while without it, models of similar scale fail
to learn the distributions under the same training proce-
dure.

Flow-based sampling.— Flow-based generative models
allow sampling from an expressive family of distributions
by applying an invertible function f to samples U from
a fixed, simple prior distribution defined by a density
r(U) [51]. The resulting samples U 0 = f(U) are dis-
tributed according to a model density q(U 0). The invert-
ible function is constructed specifically to allow e�cient
evaluation of the Jacobian factor for any given sample,
so that the associated normalized probability density,

q(U 0) = q(f(U)) = r(U)

����det
@f(U)

@U

����
�1

, (1)

is returned with each sample drawn. This feature enables
training the flow model, i.e. optimizing the function f , by
minimizing the distance between the model probability
density q(U 0) and the desired density p(U 0) using a cho-
sen metric. Any deviation from the true distribution due
to an imperfect model can be corrected by a number of
techniques; in this work, we apply Metropolis indepen-
dence sampling [25].1

A powerful approach to defining a flexible invertible
function f is through composition of several coupling
layers, f := gm � · · · � g1. Coupling layers act on sam-
ples U by applying an analytically invertible transfor-
mation (such as a scaling) to a subset of the compo-
nents UA :=

�
U i : i 2 A

 
, where the superscript i in-

dexes components of the multi-dimensional sample U and
the set A indicates the components that are transformed.
The remaining (unmodified) components UB , defined by
UB = U \ UA, are given as input to a feed-forward neu-
ral network that parameterizes the transformation. This
variable splitting guarantees invertibility despite the use
of non-invertible feed-forward networks.

Gauge-invariant flows.— Lattice gauge theories can be
defined in terms of one gauge variable Uµ(x) per nearest-
neighbor link (x, x + µ̂) of the lattice. Samples thus live
in the compact manifold GNdV , where G is the mani-
fold of the gauge group, Nd is the spacetime dimension,
and V is the lattice volume. The physical distribution
p(U) is exactly invariant under a discrete translational
symmetry group with V elements and a continuous V -
dimensional gauge symmetry group, meaning that the
density associated with any transformed field configura-
tion eU is identical to that of the untransformed config-
uration, p(eU) = p(U). Under a gauge transformation,
links Uµ(x) are transformed by a group-valued field ⌦(x)

1 Reweighted observables can also be used [52, 53]. This is ef-
ficient when measurements of the action are more costly than
measurements of observables.

as

Uµ(x) ! eUµ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂). (2)

In the flow-based approach, symmetries correspond to
flat directions of the probability density that must be
reproduced by the model. Exactly encoding symme-
tries in machine learning models can improve training
and model quality compared with learning the symme-
tries over the course of training [24, 27, 54–58]. The
incorporation of translational symmetries into models is
possible using convolutional architectures, as studied for
example in Ref. [54]. To address gauge symmetry, one
could attempt to use a gauge-fixing procedure to select
a single configuration from each gauge-equivalent class,
leaving only physical degrees of freedom; however, the
only known gauge fixing procedures that preserve trans-
lational invariance are based on implicit di↵erential equa-
tion constraints [59], which do not have a straightforward
implementation in flows. Here, we instead introduce a
method to preserve exact gauge invariance in flow-based
models.

When a flow-based model is defined in terms of cou-
pling layers, its output distribution will be invariant un-
der a symmetry group if two conditions are met:

1. The prior distribution is symmetric.

2. Each coupling layer is equivariant under the sym-
metry, i.e. all transformations commute through
application of the coupling layer [54, 56, 60–62].

Choosing a prior distribution that is symmetric is typ-
ically straightforward, for example a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.— We construct an

explicitly gauge-equivariant and invertible coupling layer
g : GNdV

! GNdV by splitting the input variables
into subsets UA and UB . In terms of these sub-
sets, we define the action of the coupling layer to be
g(UA, UB) = (U 0A, UB), where link U i

2 UA is mapped
to

U 0i = h(U iSi
|Ii)Si†, (3)

in which h : G ! G is an invertible kernel which is explic-
itly parameterized by a set of gauge-invariant quantities
Ii constructed from the elements of UB . Here, Si is a
product of links such that U iSi forms a loop that starts
and ends at a common point x, and therefore transforms
under the gauge symmetry to ⌦(x) U i⌦†(x + µ̂) ⌦(x +
µ̂)Si⌦†(x) = ⌦(x) U iSi ⌦†(x). With this definition, the
coupling layer is gauge equivariant if the kernel satisfies

h(XWX†) = X h(W ) X†, 8X, W 2 G, (4)

Loop that starts 
and ends at 
same point

Gauge-invariant 
quantities constructed 
from elements of       .
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flow-based models at a range of parameters approaching
criticality, while without it, models of similar scale fail
to learn the distributions under the same training proce-
dure.

Flow-based sampling.— Flow-based generative models
allow sampling from an expressive family of distributions
by applying an invertible function f to samples U from
a fixed, simple prior distribution defined by a density
r(U) [51]. The resulting samples U 0 = f(U) are dis-
tributed according to a model density q(U 0). The invert-
ible function is constructed specifically to allow e�cient
evaluation of the Jacobian factor for any given sample,
so that the associated normalized probability density,

q(U 0) = q(f(U)) = r(U)
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is returned with each sample drawn. This feature enables
training the flow model, i.e. optimizing the function f , by
minimizing the distance between the model probability
density q(U 0) and the desired density p(U 0) using a cho-
sen metric. Any deviation from the true distribution due
to an imperfect model can be corrected by a number of
techniques; in this work, we apply Metropolis indepen-
dence sampling [25].1

A powerful approach to defining a flexible invertible
function f is through composition of several coupling
layers, f := gm � · · · � g1. Coupling layers act on sam-
ples U by applying an analytically invertible transfor-
mation (such as a scaling) to a subset of the compo-
nents UA :=

�
U i : i 2 A

 
, where the superscript i in-

dexes components of the multi-dimensional sample U and
the set A indicates the components that are transformed.
The remaining (unmodified) components UB , defined by
UB = U \ UA, are given as input to a feed-forward neu-
ral network that parameterizes the transformation. This
variable splitting guarantees invertibility despite the use
of non-invertible feed-forward networks.

Gauge-invariant flows.— Lattice gauge theories can be
defined in terms of one gauge variable Uµ(x) per nearest-
neighbor link (x, x + µ̂) of the lattice. Samples thus live
in the compact manifold GNdV , where G is the mani-
fold of the gauge group, Nd is the spacetime dimension,
and V is the lattice volume. The physical distribution
p(U) is exactly invariant under a discrete translational
symmetry group with V elements and a continuous V -
dimensional gauge symmetry group, meaning that the
density associated with any transformed field configura-
tion eU is identical to that of the untransformed config-
uration, p(eU) = p(U). Under a gauge transformation,
links Uµ(x) are transformed by a group-valued field ⌦(x)

1 Reweighted observables can also be used [52, 53]. This is ef-
ficient when measurements of the action are more costly than
measurements of observables.

as

Uµ(x) ! eUµ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂). (2)

In the flow-based approach, symmetries correspond to
flat directions of the probability density that must be
reproduced by the model. Exactly encoding symme-
tries in machine learning models can improve training
and model quality compared with learning the symme-
tries over the course of training [24, 27, 54–58]. The
incorporation of translational symmetries into models is
possible using convolutional architectures, as studied for
example in Ref. [54]. To address gauge symmetry, one
could attempt to use a gauge-fixing procedure to select
a single configuration from each gauge-equivalent class,
leaving only physical degrees of freedom; however, the
only known gauge fixing procedures that preserve trans-
lational invariance are based on implicit di↵erential equa-
tion constraints [59], which do not have a straightforward
implementation in flows. Here, we instead introduce a
method to preserve exact gauge invariance in flow-based
models.

When a flow-based model is defined in terms of cou-
pling layers, its output distribution will be invariant un-
der a symmetry group if two conditions are met:

1. The prior distribution is symmetric.

2. Each coupling layer is equivariant under the sym-
metry, i.e. all transformations commute through
application of the coupling layer [54, 56, 60–62].

Choosing a prior distribution that is symmetric is typ-
ically straightforward, for example a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.— We construct an

explicitly gauge-equivariant and invertible coupling layer
g : GNdV

! GNdV by splitting the input variables
into subsets UA and UB . In terms of these sub-
sets, we define the action of the coupling layer to be
g(UA, UB) = (U 0A, UB), where link U i

2 UA is mapped
to

U 0i = h(U iSi
|Ii)Si†, (3)

in which h : G ! G is an invertible kernel which is explic-
itly parameterized by a set of gauge-invariant quantities
Ii constructed from the elements of UB . Here, Si is a
product of links such that U iSi forms a loop that starts
and ends at a common point x, and therefore transforms
under the gauge symmetry to ⌦(x) U i⌦†(x + µ̂) ⌦(x +
µ̂)Si⌦†(x) = ⌦(x) U iSi ⌦†(x). With this definition, the
coupling layer is gauge equivariant if the kernel satisfies

h(XWX†) = X h(W ) X†, 8X, W 2 G, (4)
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FIG. 2. An example of a variable splitting based on a tiled
4 ⇥ 1 pattern with an actively updated link U i ⌘ Uµ(x) and
1 ⇥ 1 loop U iSi ⌘ Pµ⌫(x) located at x, a passively updated
1⇥ 1 loop at ex = x� ⌫̂, and two frozen traced 1⇥ 1 loops at
x+ ⌫̂ and x+ 2⌫̂ included in the set Ii.

which implies that U 0i
! eU 0i transforms according to

Eq. (2),

eU 0i = h
�
⌦(x) U iSi ⌦†(x)|Ii

�
⌦(x)Si†⌦†(x + µ̂)

= ⌦(x)U 0i⌦†(x + µ̂).
(5)

To ensure invertibility, the product of links Si must not
contain any links in UA.

For an Abelian group, the transformation property
in Eq. (4) is trivially satisfied by any kernel. In
the U(1) gauge theory considered below, we there-
fore define the kernel using invertible flows parame-
terized by neural networks. For non-Abelian theo-
ries, it has been shown that it is possible to con-
struct invertible functions on spheres [63] and surjec-
tive functions on general Lie groups [64]. If these ap-
proaches can be generalized to produce invertible func-
tions with convergent power expansions, they will sat-
isfy the necessary kernel transformation property, since
h(XWX†) =

P
n ↵n(XWX†)n = X h(W ) X†.

An example of a variable splitting suitable for both
Abelian and non-Abelian gauge theories is given by the
pattern depicted in Fig. 2. In this example, the set of
updated links UA consists of vertical links spaced by 4
sites, and the products U iSi are 1 ⇥ 1 loops adjacent to
each U i. This is su�ciently sparse such that every Si

is independent of all updated links in UA, and a non-
trivial set of invariants Ii (e.g. all traced 1⇥ 1 loops that
are not adjacent to updated links) can be constructed
to parametrize the transformation. Composing coupling
layers using rotations and o↵sets of the pattern allows all
links to be updated.2

2 For example, composing 8 such layers is su�cient to update all
links in 2D.

Using gauge-equivariant coupling layers constructed in
terms of kernels generalizes the “trivializing map” pro-
posed in Ref. [65]. There, repeatedly applying a spe-
cific kernel based on gradients of the action theoretically
trivializes a gauge theory, i.e. maps the Euclidean time
distribution to a uniform one. The family of gauge equiv-
ariant flows defined here includes the trivializing map in
the limit of a large number of coupling layers and arbi-
trarily expressive kernel, indicating that in this limiting
case exact sampling as described in Ref. [65] is possible.
However, the approach presented here allows for more
general and inexpensive parametrizations of h. These
can be optimized to produce flows that similarly trivial-
ize the theory, and which may have a lower cost of evalu-
ation than implementations of the analytical trivializing
map [66].
Application to U(1) gauge theory.— Gauge theory with

a U(1) gauge group defined in two spacetime dimensions
is the quenched limit of 1 + 1D electrodynamics, i.e. the
Schwinger model [67]. The full Schwinger model repro-
duces many features of quantum chromodynamics (con-
finement, an axial anomaly, topology, and chiral symme-
try breaking) while being analytically tractable. Even in
the quenched limit, the well-defined gauge field topology
results in severe critical slowing down of MCMC meth-
ods for sampling lattice discretizations of the model as
the coupling is taken to criticality. We consider the lat-
tice discretization given by the Wilson gauge action [68],

S(U) := ��
X

x

Re P (x), (6)

where P (x) is the plaquette at x defined in terms of link
variables Uµ(x) 2 U(1),

P (x) := U0(x)U1(x + 0̂)U†

0 (x + 1̂)U†

1 (x), (7)

and x = (x0, x1) runs over coordinates in an L⇥L square
lattice with periodic boundary conditions. Physical infor-
mation may be extracted from the model by considering
expectation values of observables O under the Euclidean
time path integral,

hOi :=
1

Z

Z
DU O(U)e�S(U), (8)

where
R

DU denotes integration over the product of
Haar measures for each link, and Z =

R
DU e�S(U). In

this study, three key observables were considered:

1. Expectation values of powers of plaquettes.

2. Expectation values of ` ⇥ ` Wilson loops W`⇥` =Q
x2`⇥` P (x).

3. Topological susceptibility �Q = hQ2/V i, where
topological charge Q := 1

2⇡

P
x arg (P (x)) is de-

fined in terms of plaquette phase in the principal
interval, arg (P (x)) 2 [�⇡, ⇡].

2

flow-based models at a range of parameters approaching
criticality, while without it, models of similar scale fail
to learn the distributions under the same training proce-
dure.

Flow-based sampling.— Flow-based generative models
allow sampling from an expressive family of distributions
by applying an invertible function f to samples U from
a fixed, simple prior distribution defined by a density
r(U) [51]. The resulting samples U 0 = f(U) are dis-
tributed according to a model density q(U 0). The invert-
ible function is constructed specifically to allow e�cient
evaluation of the Jacobian factor for any given sample,
so that the associated normalized probability density,

q(U 0) = q(f(U)) = r(U)

����det
@f(U)

@U

����
�1

, (1)

is returned with each sample drawn. This feature enables
training the flow model, i.e. optimizing the function f , by
minimizing the distance between the model probability
density q(U 0) and the desired density p(U 0) using a cho-
sen metric. Any deviation from the true distribution due
to an imperfect model can be corrected by a number of
techniques; in this work, we apply Metropolis indepen-
dence sampling [25].1

A powerful approach to defining a flexible invertible
function f is through composition of several coupling
layers, f := gm � · · · � g1. Coupling layers act on sam-
ples U by applying an analytically invertible transfor-
mation (such as a scaling) to a subset of the compo-
nents UA :=

�
U i : i 2 A

 
, where the superscript i in-

dexes components of the multi-dimensional sample U and
the set A indicates the components that are transformed.
The remaining (unmodified) components UB , defined by
UB = U \ UA, are given as input to a feed-forward neu-
ral network that parameterizes the transformation. This
variable splitting guarantees invertibility despite the use
of non-invertible feed-forward networks.

Gauge-invariant flows.— Lattice gauge theories can be
defined in terms of one gauge variable Uµ(x) per nearest-
neighbor link (x, x + µ̂) of the lattice. Samples thus live
in the compact manifold GNdV , where G is the mani-
fold of the gauge group, Nd is the spacetime dimension,
and V is the lattice volume. The physical distribution
p(U) is exactly invariant under a discrete translational
symmetry group with V elements and a continuous V -
dimensional gauge symmetry group, meaning that the
density associated with any transformed field configura-
tion eU is identical to that of the untransformed config-
uration, p(eU) = p(U). Under a gauge transformation,
links Uµ(x) are transformed by a group-valued field ⌦(x)

1 Reweighted observables can also be used [52, 53]. This is ef-
ficient when measurements of the action are more costly than
measurements of observables.

as

Uµ(x) ! eUµ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂). (2)

In the flow-based approach, symmetries correspond to
flat directions of the probability density that must be
reproduced by the model. Exactly encoding symme-
tries in machine learning models can improve training
and model quality compared with learning the symme-
tries over the course of training [24, 27, 54–58]. The
incorporation of translational symmetries into models is
possible using convolutional architectures, as studied for
example in Ref. [54]. To address gauge symmetry, one
could attempt to use a gauge-fixing procedure to select
a single configuration from each gauge-equivalent class,
leaving only physical degrees of freedom; however, the
only known gauge fixing procedures that preserve trans-
lational invariance are based on implicit di↵erential equa-
tion constraints [59], which do not have a straightforward
implementation in flows. Here, we instead introduce a
method to preserve exact gauge invariance in flow-based
models.

When a flow-based model is defined in terms of cou-
pling layers, its output distribution will be invariant un-
der a symmetry group if two conditions are met:

1. The prior distribution is symmetric.

2. Each coupling layer is equivariant under the sym-
metry, i.e. all transformations commute through
application of the coupling layer [54, 56, 60–62].

Choosing a prior distribution that is symmetric is typ-
ically straightforward, for example a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.— We construct an

explicitly gauge-equivariant and invertible coupling layer
g : GNdV

! GNdV by splitting the input variables
into subsets UA and UB . In terms of these sub-
sets, we define the action of the coupling layer to be
g(UA, UB) = (U 0A, UB), where link U i

2 UA is mapped
to

U 0i = h(U iSi
|Ii)Si†, (3)

in which h : G ! G is an invertible kernel which is explic-
itly parameterized by a set of gauge-invariant quantities
Ii constructed from the elements of UB . Here, Si is a
product of links such that U iSi forms a loop that starts
and ends at a common point x, and therefore transforms
under the gauge symmetry to ⌦(x) U i⌦†(x + µ̂) ⌦(x +
µ̂)Si⌦†(x) = ⌦(x) U iSi ⌦†(x). With this definition, the
coupling layer is gauge equivariant if the kernel satisfies

h(XWX†) = X h(W ) X†, 8X, W 2 G, (4)

Loop that starts 
and ends at 
same point
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FIG. 2. Decomposition of a single gauge equivariant coupling
layer. Outer gray sections depict the general formulation of
gauge equivariant flows detailed in Ref. [11]. Inner colored
sections detail the kernel we construct in Sec. III for a single
SU(N) variable.
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FIG. 3. Our choice of plaquettes to update [Pµ⌫(x), yellow],
gauge invariant context for that transformation [I1 and I2,
green], the corresponding updated link [Uµ(x), blue], and the
plaquettes passively modified as a result of the link update
[Pµ⌫(x̃), red] for two-dimensional gauge theory. A repeating
cycle of rotations and translations are applied to the pattern
for successive coupling layers; composition of 8 coupling layers
is su�cient to update every link once for this pattern.

kernel is used to transform untraced loops of links start-
ing and ending at a common point (whose spectrum has
physical, gauge-invariant meaning). Here, we specify a
general method to construct such kernels and investigate
application of these kernels to sampling probability den-
sities on single SU(N) or U(N) variables (representing
marginal distributions on open loops in the full gauge
theory).

In the language of groups, a kernel should move den-
sity between conjugacy classes while preserving struc-
ture within those classes. Each conjugacy class is de-
fined by a set {XUX�1 : X 2 G}, for some U . It
is useful, however, to think of each conjugacy class in
SU(N) or U(N) as a set of all matrices with some par-
ticular spectrum; for example, all matrices with eigenval-
ues {ei3⇡/12, ei5⇡/12, e�i8⇡/12

} form a conjugacy class in
SU(3). Intuitively, a kernel should therefore move density
between possible N -tuples of eigenvalues while preserving
the eigenvector structure. In Appendix A we prove that
this intuition is exact: a kernel can generally be defined
as an invertible map that acts on the list of eigenvalues
of the input matrix, is equivariant under permutations of
the eigenvalues, and leaves the eigenvectors unchanged.
In our applications, we therefore structure the kernel to
accept a matrix-valued input, diagonalize it to produce
an (arbitrarily ordered) list of eigenvalues and eigenvec-
tors, transform the eigenvalues in a permutation equiv-
ariant fashion, then reconstruct the matrix using the new
eigenvalues. Fig. 2 depicts how this spectral flow is ap-
plied in the context of a gauge equivariant coupling layer.

Permutation equivariance is required to ensure that
the kernel acts only based on the spectrum, not the par-
ticular order of eigenvalues produced during diagonaliza-
tion. Normalizing flows that are permutation equivari-
ant have previously been investigated in the machine-
learning community to learn densities over sets (such as
point-clouds, objects in a 3D scene, particles in molecu-
lar dynamics, and particle tracks in collider events) [42–
44, 46–53]. Such approaches are directly applicable to
kernels for U(N) variables (see Appendix E), because the
eigenvalues can be transformed independently. For an
SU(N) variable, however, the constraint det U = 1 must
additionally be satisfied, which prevents these methods
from being straightforwardly applied. As an example,
Figure 4 depicts the space of eigenvalues of SU(2), SU(3),
and SU(4) variables and illustrates the constrained sur-
face of possible eigenvalues as well as the cells on this
surface that are related by permutations in each case.
To be equivariant, a spectral flow for SU(N) must trans-
form values within each cell identically.

In this section, we describe special-case constructions
of permutation equivariant transformations on the eigen-
values of an SU(2) or SU(3) variable, then generalize
the approach to SU(N). In each case, we demonstrate
the expressivity of these transformations by construct-
ing flow-based models in terms of these transformations
and training the models to learn several target families
of densities that are invariant under matrix conjugation.

Other recent related work: 
Luo, Clark Stokes, 2012.05232 (2020) 
Favoni et al, 2012.12901 (2021) 
Luo et al, 2101.07243 (2021)
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FIG. 4. Illustration of the eigenvalue spaces and respective Haar measures in the angular coordinate system ✓k = arg(�k) for
SU(2) [left], SU(3) [middle], and SU(4) [right]. Eq. (19) describes how the Haar measure is included in these plots over the
space of eigenvalues. The constraint detU = 1 restricts the space of eigenvalues to the surface of codimension 1 defined byP

k ✓k = 0 (mod 2⇡) depicted in each space. On each surface, permutation of the axes corresponds to permutation among
the N ! cells delineated by green boundaries. A canonical cell used to construct permutation equivariant coupling layers is
highlighted in orange for each surface. For SU(4), we show the surface of eigenvalues projected to an orthonormal basis in the
constraint surface. For clarity in the SU(3) and SU(4) figures, we extend the range of the axes rather than showing the parts
of the eigenvalue surface that would wrap around the periodic boundaries.

A. Target densities

As target distributions to test this approach, we de-
fine densities on SU(N) matrices that are invariant under
matrix conjugation. For an SU(N) variable in the funda-
mental matrix representation, such a class of probability
densities can be defined in terms of traces of powers of
the variable,

p(i)
toy(U) := e�Si(U)/Zi, Zi =

Z
dUe�Si(U), (17)

where

Si(U) := �
�

N
Re tr

"
X

n

c(i)
n

Un

#
(18)

and
R

dU is integration with respect to the Haar measure
of the group. Any distribution in this family is manifestly
invariant under matrix conjugation, and is therefore a
function of the spectrum only. The coe�cients c(i) de-
termine the shape of the density on the group manifold,
while � determines the scale of the density.

The coe�cients c(i) defining the target densities for
this study are reported in Table I. The first set of coef-
ficients, c(0), was chosen to exactly match the marginal
distribution on each open plaquette in the case of two-
dimensional lattice gauge theory. To further investigate
densities with similar structure, two additional sets of
coe�cients were chosen by randomly drawing values for

c(i)
1 , c(i)

2 , and c(i)
3 , and restricting to coe�cients that pro-

duce a single peak in the density across all values of �.
Performance on this set of coe�cients is therefore repre-
sentative of the ability of these flows to learn the local
densities relevant to sampling for two-dimensional lattice
gauge theory.

set i c(i)1 c(i)2 c(i)3

0 1 0 0
1 0.17 -0.65 1.22
2 0.98 -0.63 -0.21

TABLE I. Sets of coe�cients c(i)n used to investigate the SU(2)
and SU(3) matrix conjugation equivariant flow.

To investigate the expressivity of the permutation
equivariant transformations that we define, we construct
flow-based models that combine a uniform prior density
with one kernel defined using the equivariant transfor-
mations under study. This combination of an invariant
prior distribution with application of an equivariant ker-
nel imposes matrix conjugation symmetry on each flow-
based model exactly. As a metric for the expressivity of
the permutation equivariant transformations used in each
kernel, we checked the ability of the flow-based models to
reproduce the target densities. Measurements of the ESS
and plots of the densities are used to investigate model
quality.

When plotting densities in the space of eigenvalues, as
in Fig. 4 above and the density plots below, we always
plot with respect to the Lebesgue measure on the eigen-
values. This is a natural choice, as densities with respect
to this measure are what one expects to reproduce using
histograms in the space of eigenvalues. However, the full
model on SU(N) reports densities with respect to the
Haar measure. When restricting to the space of eigenval-
ues, the resulting measure is absolutely continuous with
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FIG. 2. Decomposition of a single gauge equivariant coupling
layer. Outer gray sections depict the general formulation of
gauge equivariant flows detailed in Ref. [11]. Inner colored
sections detail the kernel we construct in Sec. III for a single
SU(N) variable.
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g2
<latexit sha1_base64="APyp7iOenZZ25oyZN+BqLZ0hFao=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqswUQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOuk06q5Td+8uas3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGBvGlvA==</latexit><latexit sha1_base64="APyp7iOenZZ25oyZN+BqLZ0hFao=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqswUQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOuk06q5Td+8uas3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGBvGlvA==</latexit><latexit sha1_base64="APyp7iOenZZ25oyZN+BqLZ0hFao=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqswUQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOuk06q5Td+8uas3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGBvGlvA==</latexit><latexit sha1_base64="APyp7iOenZZ25oyZN+BqLZ0hFao=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqswUQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOuk06q5Td+8uas3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGBvGlvA==</latexit>

g3
<latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="UWLLxPiKWMhGxtZ4WXFidNyb6Ow=">AAACFnichZDNSsNAFIVv6l+NVdu1m2ARXJXEjS4FNy4r2B9oQ7mZ3LRDJ5MwMxFK6Au49Rl8Gnfixrdx+rOwreCBgcM5d5g7X5QLro3vfzuVvf2Dw6PqsXtSc0/Pzuu1rs4KxajDMpGpfoSaBJfUMdwI6ueKMI0E9aLpw6LvvZDSPJPPZpZTmOJY8oQzNDZqj+pNv+Uv5e2aYG2asNao4ZwN44wVKUnDBGo9CPzchCUqw5mguTssNOXIpjimgbUSU9Jhudxz7l3ZJPaSTNkjjbdMf98oMdV6lkZ2MkUz0dvdIvyzixROyWy8XjKUjMT8v7lBYZK7sOQyLwxJtloyKYRnMm8BzIu5ImbEzBpkitt/emyCCpmxWF0LMNjGtWu6N63AbwVPPlThAi7hGgK4hXt4hDZ0gEEMr/DmvDsfzucKdMVZE2/AhpyvH8ZHoic=</latexit><latexit sha1_base64="IAVOls6bMcvyFoFxXqrfGStxJHk=">AAACHXichZDNSsNAFIVv6l+ttbZu3QwWwVVJdKFLwY3LCvYH2lBuprft0MkkzEyEEvoKbvUZfBp30rcxabuwreCBgcM5d5g7XxBLYazrLpzC3v7B4VHxuHRSPq2cVWvltokSzanFIxnpboCGpFDUssJK6saaMAwkdYLpY953XkkbEakXO4vJD3GsxEhwtHk0HtyWBtW623CXYrvGW5s6rNUc1JxKfxjxJCRluURjep4bWz9FbQWXNC/1E0Mx8imOqZdZhSEZP10uO2dXWTJko0hnR1m2TH/fSDE0ZhYG2WSIdmK2uzz8sws0TsluvJ5yVJzk/L+5XmJH934qVJxYUny15CiRzEYsp8aGQhO3cpYZ5Fpk/2R8ghq5zdjmBL1tXrumfdPw3Ib37EIRLuASrsGDO3iAJ2hCCzhM4A3e4cP5dL6c7xXrgrOGfg4bchY/HWqkPg==</latexit><latexit sha1_base64="IAVOls6bMcvyFoFxXqrfGStxJHk=">AAACHXichZDNSsNAFIVv6l+ttbZu3QwWwVVJdKFLwY3LCvYH2lBuprft0MkkzEyEEvoKbvUZfBp30rcxabuwreCBgcM5d5g7XxBLYazrLpzC3v7B4VHxuHRSPq2cVWvltokSzanFIxnpboCGpFDUssJK6saaMAwkdYLpY953XkkbEakXO4vJD3GsxEhwtHk0HtyWBtW623CXYrvGW5s6rNUc1JxKfxjxJCRluURjep4bWz9FbQWXNC/1E0Mx8imOqZdZhSEZP10uO2dXWTJko0hnR1m2TH/fSDE0ZhYG2WSIdmK2uzz8sws0TsluvJ5yVJzk/L+5XmJH934qVJxYUny15CiRzEYsp8aGQhO3cpYZ5Fpk/2R8ghq5zdjmBL1tXrumfdPw3Ib37EIRLuASrsGDO3iAJ2hCCzhM4A3e4cP5dL6c7xXrgrOGfg4bchY/HWqkPg==</latexit><latexit sha1_base64="/baqA/b8uPYTSDSquGfm946SQYE=">AAACKHichVDLSgMxFE3qq9ZXq0s3wSK4KjO60GXRjcsK9gHtUO6kt21oJjMkGaEM/QW3+g1+jTvp1i9xpp2FbQUPBA7nnMu9OX4khbGOM6eFre2d3b3ifung8Oj4pFw5bZkw1hybPJSh7vhgUAqFTSusxE6kEQJfYtufPGR++wW1EaF6ttMIvQBGSgwFB5tJo/5NqV+uOjVnAbZJ3JxUSY5Gv0KPe4OQxwEqyyUY03WdyHoJaCu4xFmpFxuMgE9ghN2UKgjQeMni2Bm7TJUBG4Y6fcqyhfp7IoHAmGngp8kA7Nise5n4p+drmKBd2Z5wUBzl7L9cN7bDOy8RKootKr48chhLZkOWtcYGQiO3cpoS4Fqk/2R8DBq4TbvNGnTX+9okreua69TcJ6dav8+7LJJzckGuiEtuSZ08kgZpEk7G5JW8kXf6QT/pF50vowWaz5yRFdDvHz8apc0=</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit>

g4
<latexit sha1_base64="4wxtPWNDnmCH0dgSYyQ3K0rC1ac=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqsxIQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOulc1F2n7t41as3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGCnOlvg==</latexit><latexit sha1_base64="4wxtPWNDnmCH0dgSYyQ3K0rC1ac=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqsxIQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOulc1F2n7t41as3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGCnOlvg==</latexit><latexit sha1_base64="4wxtPWNDnmCH0dgSYyQ3K0rC1ac=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqsxIQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOulc1F2n7t41as3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGCnOlvg==</latexit><latexit sha1_base64="4wxtPWNDnmCH0dgSYyQ3K0rC1ac=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqsxIQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOulc1F2n7t41as3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGCnOlvg==</latexit>
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FIG. 3. Our choice of plaquettes to update [Pµ⌫(x), yellow],
gauge invariant context for that transformation [I1 and I2,
green], the corresponding updated link [Uµ(x), blue], and the
plaquettes passively modified as a result of the link update
[Pµ⌫(x̃), red] for two-dimensional gauge theory. A repeating
cycle of rotations and translations are applied to the pattern
for successive coupling layers; composition of 8 coupling layers
is su�cient to update every link once for this pattern.

kernel is used to transform untraced loops of links start-
ing and ending at a common point (whose spectrum has
physical, gauge-invariant meaning). Here, we specify a
general method to construct such kernels and investigate
application of these kernels to sampling probability den-
sities on single SU(N) or U(N) variables (representing
marginal distributions on open loops in the full gauge
theory).

In the language of groups, a kernel should move den-
sity between conjugacy classes while preserving struc-
ture within those classes. Each conjugacy class is de-
fined by a set {XUX�1 : X 2 G}, for some U . It
is useful, however, to think of each conjugacy class in
SU(N) or U(N) as a set of all matrices with some par-
ticular spectrum; for example, all matrices with eigenval-
ues {ei3⇡/12, ei5⇡/12, e�i8⇡/12

} form a conjugacy class in
SU(3). Intuitively, a kernel should therefore move density
between possible N -tuples of eigenvalues while preserving
the eigenvector structure. In Appendix A we prove that
this intuition is exact: a kernel can generally be defined
as an invertible map that acts on the list of eigenvalues
of the input matrix, is equivariant under permutations of
the eigenvalues, and leaves the eigenvectors unchanged.
In our applications, we therefore structure the kernel to
accept a matrix-valued input, diagonalize it to produce
an (arbitrarily ordered) list of eigenvalues and eigenvec-
tors, transform the eigenvalues in a permutation equiv-
ariant fashion, then reconstruct the matrix using the new
eigenvalues. Fig. 2 depicts how this spectral flow is ap-
plied in the context of a gauge equivariant coupling layer.

Permutation equivariance is required to ensure that
the kernel acts only based on the spectrum, not the par-
ticular order of eigenvalues produced during diagonaliza-
tion. Normalizing flows that are permutation equivari-
ant have previously been investigated in the machine-
learning community to learn densities over sets (such as
point-clouds, objects in a 3D scene, particles in molecu-
lar dynamics, and particle tracks in collider events) [42–
44, 46–53]. Such approaches are directly applicable to
kernels for U(N) variables (see Appendix E), because the
eigenvalues can be transformed independently. For an
SU(N) variable, however, the constraint det U = 1 must
additionally be satisfied, which prevents these methods
from being straightforwardly applied. As an example,
Figure 4 depicts the space of eigenvalues of SU(2), SU(3),
and SU(4) variables and illustrates the constrained sur-
face of possible eigenvalues as well as the cells on this
surface that are related by permutations in each case.
To be equivariant, a spectral flow for SU(N) must trans-
form values within each cell identically.

In this section, we describe special-case constructions
of permutation equivariant transformations on the eigen-
values of an SU(2) or SU(3) variable, then generalize
the approach to SU(N). In each case, we demonstrate
the expressivity of these transformations by construct-
ing flow-based models in terms of these transformations
and training the models to learn several target families
of densities that are invariant under matrix conjugation.

[2008.05456 (2020), PRL 125, 121601 (2020), 2002.02428 (2020)]
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FIG. 8. Illustration of the steps we use to apply a flow to an
(N � 1)-simplex, shown for N = 3 as an example. Starting
from an initial density on the simplex  , we map it to an
axis-aligned simplex � then to an open box ⌦. We apply a
parametric boundary preserving flow � to the box and finally
invert the chain back to the original coordinate system.

inverse map ��1 : � ! ⌦ is given by

��1
i

(⇢) =
⇢

1 �
P

i�1
j=1 ⇢j

, (24)

for ⇢ 2 �, while ⇣�1 :  ! � is given by

⇣�1(x) = (x � y1)M
T (MMT )�1. (25)

The entire chain of coordinate transformations, flow, and
inverse coordinate transformations is depicted in Fig. 8.

The Jacobian of the entire flow can be computed by
composing the Jacobian factors from each transformation
in the chain. While the Jacobian factors acquired from
the coordinate transformations are fixed, the flow act-
ing on ⌦ is parameterized by, and the resulting density
depends on, the action of this inner flow. For example,
the inner flow could be a spline flow [56] constructed to
transform each coordinate of ⌦ as a function of the model
parameters and possibly the other coordinates of ⌦. It
is this inner flow that must be trained in each coupling
layer to reproduce the final density on SU(N). A com-
plete listing of the algorithm to apply the matrix conju-
gation equivariant kernel defined by the above spectral
flow is given in Appendix B.

We implemented this general approach to matrix con-
jugation equivariant flows on SU(N) variables for a range
of N . For N  9, we trained these flows to reproduce tar-
get densities defined by Eq. (17), with coe�cients listed
in Table I, and � = 9. An ESS of greater than 5% was
achieved on all target densities, with c(0) performing sig-
nificantly better with greater than 90% ESS across all
densities. Fig. 9 compares the flow-based densities to
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FIG. 9. Densities on a two-dimensional slice through the
space of SU(9) eigenvalues defined by varying ✓1 and ✓2, keep-
ing ✓3, . . . , ✓8 fixed to random values, and assigning ✓9 =
wrap(�

P8
k=1 ✓k). The densities learned by the flow-based

models are compared to the target densities for three distri-
butions, each with � = 9. Horizontal, vertical, and diagonal
lines of zero density correspond to locations where the cho-
sen slice crosses through walls of the cells (on which the Haar
measure forces the density to zero). Due to exact permuta-
tion invariance of the flow-based distribution, these lines are
exactly reproduced.

the target densities for N = 9. Worse performance on
c(1) and c(2) is reflective of their multimodal nature for
some values of �/N . To investigate performance at large
N , we trained flows to reproduce the c(0) density for
10  N  100, and found ESSs greater than 90% for
all models. All model distributions were confirmed to
have exact permutation invariance.

IV. APPLICATION TO SU(2) AND SU(3)
LATTICE GAUGE THEORY IN 2D

With an invertible kernel that is equivariant under ma-
trix conjugation, the methods presented in Ref. [11] im-
mediately allow construction of gauge equivariant cou-
pling layers for SU(N) lattice gauge theory. To study
the e�cacy of such coupling layers for this application, we
trained flow-based models to sample from distributions
relevant for 1 + 1-dimensional gauge theory. Specifically,
we considered the distribution defined by the imaginary-
time path integral in Eq. (1) with the action given by the
Wilson discretization of the continuum gauge action,

S(U) := �
�

N

X

x

Re tr [P01(x)] . (26)

SU(9) flows
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• Analytic integration leaves S[ɸ] expensive to compute 


• Conventionally auxiliary “pseudofermion” fields are introduced and marginalised over  
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(a) �-Marginal architecture based on convex potential flows (Section IV C 1).

�������

�������

(b) Fully joint architecture for q(�, ') based on coupling layers (Section IV C 4).

�������

�������

(c) �-Conditional model q(�|') defined via a restricted joint architecture (Section IV C 2).

�������

�������

(d) Autoregressive model q(�)q('|�) defined via coupling layers and linear flows (Section IV C 3).

FIG. 3. Architectures for the flow-based models defined in Section IVC for each sampling approach. Note that each coupling
layer gpk or gapk employs masking of the updated field as shown in Figure 2, such that the frozen components of the field
are included as input to context functions. Superscripts on coupling layers indicate the translational equivariance structure of
coupling layer inputs and outputs (either consistently transforming as P-fields or AP-fields). Many other choices of architectures
are possible to model each distribution; the figure reflects the choices utilized in the numerical study undertaken in Section VA.

q(�), then drawing ' from the conditional deep linear
flow with distribution q('|�), as shown in Figure 3d.
The marginal model is defined by sampling ⇣ from the
prior distribution rp(⇣), then applying the sequence of
coupling layers g

p
k(·) such that the marginal model prob-

ability density q(�) is given by:

q(�) = rp(⇣)
Y

k

det J
�1
gp
k

. (30)

The conditional linear flow is defined by sampling � from
the prior distribution rap(�) and applying the linear op-

erators Wk(�) to obtain the model density

q('|�) = rap(�)
Y

k

1

detWkW
†
k

. (31)

The definition of rap(�) = 1
ZN

e
��†� matches the choice

in the linear flow seen in Equation (25) within Sec-
tion IV B 4.

Note that the learned components in this approach
may also be combined in novel ways. For example, it
is possible to discard the conditional flow with distri-
bution q('|�) after training and simply use q(�) for �-
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Joint architecture based on coupling layers

Autoregressive model based on coupling layers and linear flows

QCD action includes Grassman-valued (anticommuting) fermion fields
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One complex number               per link on a 2D lattice

Action: expressed in terms of plaquettes (products of links 
around closed loops) with a single coupling 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FIG. 2. An example of a variable splitting based on a tiled
4 ⇥ 1 pattern with an actively updated link U i ⌘ Uµ(x) and
1 ⇥ 1 loop U iSi ⌘ Pµ⌫(x) located at x, a passively updated
1⇥ 1 loop at ex = x� ⌫̂, and two frozen traced 1⇥ 1 loops at
x+ ⌫̂ and x+ 2⌫̂ included in the set Ii.

which implies that U 0i
! eU 0i transforms according to

Eq. (2),

eU 0i = h
�
⌦(x) U iSi ⌦†(x)|Ii

�
⌦(x)Si†⌦†(x + µ̂)

= ⌦(x)U 0i⌦†(x + µ̂).
(5)

To ensure invertibility, the product of links Si must not
contain any links in UA.

For an Abelian group, the transformation property
in Eq. (4) is trivially satisfied by any kernel. In
the U(1) gauge theory considered below, we there-
fore define the kernel using invertible flows parame-
terized by neural networks. For non-Abelian theo-
ries, it has been shown that it is possible to con-
struct invertible functions on spheres [63] and surjec-
tive functions on general Lie groups [64]. If these ap-
proaches can be generalized to produce invertible func-
tions with convergent power expansions, they will sat-
isfy the necessary kernel transformation property, since
h(XWX†) =

P
n ↵n(XWX†)n = X h(W ) X†.

An example of a variable splitting suitable for both
Abelian and non-Abelian gauge theories is given by the
pattern depicted in Fig. 2. In this example, the set of
updated links UA consists of vertical links spaced by 4
sites, and the products U iSi are 1 ⇥ 1 loops adjacent to
each U i. This is su�ciently sparse such that every Si

is independent of all updated links in UA, and a non-
trivial set of invariants Ii (e.g. all traced 1⇥ 1 loops that
are not adjacent to updated links) can be constructed
to parametrize the transformation. Composing coupling
layers using rotations and o↵sets of the pattern allows all
links to be updated.2

2 For example, composing 8 such layers is su�cient to update all
links in 2D.

Using gauge-equivariant coupling layers constructed in
terms of kernels generalizes the “trivializing map” pro-
posed in Ref. [65]. There, repeatedly applying a spe-
cific kernel based on gradients of the action theoretically
trivializes a gauge theory, i.e. maps the Euclidean time
distribution to a uniform one. The family of gauge equiv-
ariant flows defined here includes the trivializing map in
the limit of a large number of coupling layers and arbi-
trarily expressive kernel, indicating that in this limiting
case exact sampling as described in Ref. [65] is possible.
However, the approach presented here allows for more
general and inexpensive parametrizations of h. These
can be optimized to produce flows that similarly trivial-
ize the theory, and which may have a lower cost of evalu-
ation than implementations of the analytical trivializing
map [66].
Application to U(1) gauge theory.— Gauge theory with

a U(1) gauge group defined in two spacetime dimensions
is the quenched limit of 1 + 1D electrodynamics, i.e. the
Schwinger model [67]. The full Schwinger model repro-
duces many features of quantum chromodynamics (con-
finement, an axial anomaly, topology, and chiral symme-
try breaking) while being analytically tractable. Even in
the quenched limit, the well-defined gauge field topology
results in severe critical slowing down of MCMC meth-
ods for sampling lattice discretizations of the model as
the coupling is taken to criticality. We consider the lat-
tice discretization given by the Wilson gauge action [68],

S(U) := ��
X

x

Re P (x), (6)

where P (x) is the plaquette at x defined in terms of link
variables Uµ(x) 2 U(1),

P (x) := U0(x)U1(x + 0̂)U†

0 (x + 1̂)U†

1 (x), (7)

and x = (x0, x1) runs over coordinates in an L⇥L square
lattice with periodic boundary conditions. Physical infor-
mation may be extracted from the model by considering
expectation values of observables O under the Euclidean
time path integral,

hOi :=
1

Z

Z
DU O(U)e�S(U), (8)

where
R

DU denotes integration over the product of
Haar measures for each link, and Z =

R
DU e�S(U). In

this study, three key observables were considered:

1. Expectation values of powers of plaquettes.

2. Expectation values of ` ⇥ ` Wilson loops W`⇥` =Q
x2`⇥` P (x).

3. Topological susceptibility �Q = hQ2/V i, where
topological charge Q := 1

2⇡

P
x arg (P (x)) is de-

fined in terms of plaquette phase in the principal
interval, arg (P (x)) 2 [�⇡, ⇡].
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FIG. 2. An example of a variable splitting based on a tiled
4 ⇥ 1 pattern with an actively updated link U i ⌘ Uµ(x) and
1 ⇥ 1 loop U iSi ⌘ Pµ⌫(x) located at x, a passively updated
1⇥ 1 loop at ex = x� ⌫̂, and two frozen traced 1⇥ 1 loops at
x+ ⌫̂ and x+ 2⌫̂ included in the set Ii.

which implies that U 0i
! eU 0i transforms according to

Eq. (2),

eU 0i = h
�
⌦(x) U iSi ⌦†(x)|Ii

�
⌦(x)Si†⌦†(x + µ̂)

= ⌦(x)U 0i⌦†(x + µ̂).
(5)

To ensure invertibility, the product of links Si must not
contain any links in UA.

For an Abelian group, the transformation property
in Eq. (4) is trivially satisfied by any kernel. In
the U(1) gauge theory considered below, we there-
fore define the kernel using invertible flows parame-
terized by neural networks. For non-Abelian theo-
ries, it has been shown that it is possible to con-
struct invertible functions on spheres [63] and surjec-
tive functions on general Lie groups [64]. If these ap-
proaches can be generalized to produce invertible func-
tions with convergent power expansions, they will sat-
isfy the necessary kernel transformation property, since
h(XWX†) =

P
n ↵n(XWX†)n = X h(W ) X†.

An example of a variable splitting suitable for both
Abelian and non-Abelian gauge theories is given by the
pattern depicted in Fig. 2. In this example, the set of
updated links UA consists of vertical links spaced by 4
sites, and the products U iSi are 1 ⇥ 1 loops adjacent to
each U i. This is su�ciently sparse such that every Si

is independent of all updated links in UA, and a non-
trivial set of invariants Ii (e.g. all traced 1⇥ 1 loops that
are not adjacent to updated links) can be constructed
to parametrize the transformation. Composing coupling
layers using rotations and o↵sets of the pattern allows all
links to be updated.2

2 For example, composing 8 such layers is su�cient to update all
links in 2D.

Using gauge-equivariant coupling layers constructed in
terms of kernels generalizes the “trivializing map” pro-
posed in Ref. [65]. There, repeatedly applying a spe-
cific kernel based on gradients of the action theoretically
trivializes a gauge theory, i.e. maps the Euclidean time
distribution to a uniform one. The family of gauge equiv-
ariant flows defined here includes the trivializing map in
the limit of a large number of coupling layers and arbi-
trarily expressive kernel, indicating that in this limiting
case exact sampling as described in Ref. [65] is possible.
However, the approach presented here allows for more
general and inexpensive parametrizations of h. These
can be optimized to produce flows that similarly trivial-
ize the theory, and which may have a lower cost of evalu-
ation than implementations of the analytical trivializing
map [66].
Application to U(1) gauge theory.— Gauge theory with

a U(1) gauge group defined in two spacetime dimensions
is the quenched limit of 1 + 1D electrodynamics, i.e. the
Schwinger model [67]. The full Schwinger model repro-
duces many features of quantum chromodynamics (con-
finement, an axial anomaly, topology, and chiral symme-
try breaking) while being analytically tractable. Even in
the quenched limit, the well-defined gauge field topology
results in severe critical slowing down of MCMC meth-
ods for sampling lattice discretizations of the model as
the coupling is taken to criticality. We consider the lat-
tice discretization given by the Wilson gauge action [68],

S(U) := ��
X

x

Re P (x), (6)

where P (x) is the plaquette at x defined in terms of link
variables Uµ(x) 2 U(1),

P (x) := U0(x)U1(x + 0̂)U†

0 (x + 1̂)U†

1 (x), (7)

and x = (x0, x1) runs over coordinates in an L⇥L square
lattice with periodic boundary conditions. Physical infor-
mation may be extracted from the model by considering
expectation values of observables O under the Euclidean
time path integral,

hOi :=
1

Z

Z
DU O(U)e�S(U), (8)

where
R

DU denotes integration over the product of
Haar measures for each link, and Z =

R
DU e�S(U). In

this study, three key observables were considered:

1. Expectation values of powers of plaquettes.

2. Expectation values of ` ⇥ ` Wilson loops W`⇥` =Q
x2`⇥` P (x).

3. Topological susceptibility �Q = hQ2/V i, where
topological charge Q := 1

2⇡

P
x arg (P (x)) is de-

fined in terms of plaquette phase in the principal
interval, arg (P (x)) 2 [�⇡, ⇡].
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FIG. 3. Left: estimates of average Wilson loops hW`⇥`i mea-
sured on the finest ensemble studied here (� = 7). Right:
estimates of topological susceptibility measured on the three
finest ensembles studied here (� = 5, 6, 7). All values are plot-
ted as ratios to the exact results. The flow-based estimates
are consistent with the exact values, while the HMC and Heat
Bath estimates have larger uncertainties and also significantly
deviate from the exact values in some cases.

To investigate critical slowing down, we studied the
theory at a fixed lattice size, L = 16, using seven choices
of the parameter � = {1, 2, 3, 4, 5, 6, 7}; the theory ap-
proaches the continuum limit as � ! 1. For each pa-
rameter choice, we trained gauge invariant flow-based
models using a uniform prior distribution and a composi-
tion of 24 gauge-equivariant coupling layers. The kernels
h were chosen to be mixtures of Non-Compact Projec-
tions [63], which are suitable for U(1) group elements;
in particular, we used 6 components for each mixture
and parameterized each transformation with a convolu-
tional neural network. The model architecture was held
fixed across all choices of �, ensuring identical cost to
draw samples for each parameter choice. To train the
models, we minimized the Kullback-Leibler divergence
between the model density q(U) and the target density
e�S(U)/Z. Training was halted when the loss function
reached a plateau. For this proof-of-principle study, we
did not perform extensive optimization over the variable
splitting pattern, neural network architecture, or train-
ing hyperparameters, and it is likely that better models
can be trained.

After training, the flow-based models were used to gen-
erate proposals for a Metropolis independence Markov
chain [25], producing ensembles of 100, 000 samples each.
For comparison, ensembles of identical size were pro-
duced using the HMC and Heat Bath algorithms. For
all choices of �, we fixed the HMC trajectory length to
achieve > 80% acceptance rate when using a leapfrog in-
tegrator with 5 steps. Each HB step was defined as one
sweep, i.e. a single update of every link. To within 10%,
the computational cost per HMC trajectory was equal
to the cost per proposal from the flow-based model in
a single-threaded CPU environment, while the cost per
Heat Bath step was half that of HMC or flow.

Using samples from a flow-based model as proposals
within a Markov chain ensures unbiased estimates after

FIG. 4. Integrated autocorrelation time for the topological
charge, ⌧ int

Q , measured on ensembles of 16 ⇥ 16 lattices gen-
erated using HMC, Heat Bath, and the flow-based algorithm.
Ten replicas of each ensemble were used to estimate errors,
which are smaller than the plot markers for most points.

thermalization; at the finite ensemble size used here, all
observables were found to agree with analytical results
within statistical uncertainties. Of the observables we
studied, local quantities like powers of plaquettes and
expectation values of small Wilson loops were estimated
more precisely by HMC and HB than with the flow-based
algorithm. However, Fig. 3 shows that for observables
with larger extent such as W`⇥` with ` � 4, and par-
ticularly for �Q, large autocorrelations in the HMC and
HB samples result in estimates that deviate from the ex-
act values and have lower precision than the flow-based
estimates.

For Markov chain methods, the characteristic length of
autocorrelations for an observable O can be defined by
the integrated autocorrelation time ⌧ int

O
[69]. Fig. 4 com-

pares ⌧ int
Q for HMC and HB to that in the flow-based al-

gorithm as an indicator of how well the three methods ex-
plore the distribution of topological charge. For all three
methods, ⌧ int

Q grows as � is increased towards the con-
tinuum limit. However, this problem is far less severe for
the flow-based algorithm than for HMC or HB. For exam-
ple, the autocorrelation time in the flow-based algorithm
is approximately 10 at the largest value of �, whereas
⌧ int
Q ⇡ 4000 for HB and ⌧ int

Q ⇡ 15000 for HMC. Account-
ing for the relative cost per step of each Markov chain,
the flow-based Metropolis sampler is therefore roughly
1500 times more e�cient than HMC and 200 times more
e�cient than Heat Bath in determining topological quan-
tities. A promising possibility for further development is
mixing flow-based Markov chain steps with HMC tra-
jectories or Heat Bath sweeps to gain the benefits of
standard Markov chain steps for local observables and
of the flow-based algorithm for extended and topological
observables.

Summary.— Critical slowing down of sampling in lat-
tice gauge theories is an obstacle to precisely estimat-
ing quantities of physical interest as critical limits of the
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ted as ratios to the exact results. The flow-based estimates
are consistent with the exact values, while the HMC and Heat
Bath estimates have larger uncertainties and also significantly
deviate from the exact values in some cases.

To investigate critical slowing down, we studied the
theory at a fixed lattice size, L = 16, using seven choices
of the parameter � = {1, 2, 3, 4, 5, 6, 7}; the theory ap-
proaches the continuum limit as � ! 1. For each pa-
rameter choice, we trained gauge invariant flow-based
models using a uniform prior distribution and a composi-
tion of 24 gauge-equivariant coupling layers. The kernels
h were chosen to be mixtures of Non-Compact Projec-
tions [63], which are suitable for U(1) group elements;
in particular, we used 6 components for each mixture
and parameterized each transformation with a convolu-
tional neural network. The model architecture was held
fixed across all choices of �, ensuring identical cost to
draw samples for each parameter choice. To train the
models, we minimized the Kullback-Leibler divergence
between the model density q(U) and the target density
e�S(U)/Z. Training was halted when the loss function
reached a plateau. For this proof-of-principle study, we
did not perform extensive optimization over the variable
splitting pattern, neural network architecture, or train-
ing hyperparameters, and it is likely that better models
can be trained.

After training, the flow-based models were used to gen-
erate proposals for a Metropolis independence Markov
chain [25], producing ensembles of 100, 000 samples each.
For comparison, ensembles of identical size were pro-
duced using the HMC and Heat Bath algorithms. For
all choices of �, we fixed the HMC trajectory length to
achieve > 80% acceptance rate when using a leapfrog in-
tegrator with 5 steps. Each HB step was defined as one
sweep, i.e. a single update of every link. To within 10%,
the computational cost per HMC trajectory was equal
to the cost per proposal from the flow-based model in
a single-threaded CPU environment, while the cost per
Heat Bath step was half that of HMC or flow.

Using samples from a flow-based model as proposals
within a Markov chain ensures unbiased estimates after
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erated using HMC, Heat Bath, and the flow-based algorithm.
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thermalization; at the finite ensemble size used here, all
observables were found to agree with analytical results
within statistical uncertainties. Of the observables we
studied, local quantities like powers of plaquettes and
expectation values of small Wilson loops were estimated
more precisely by HMC and HB than with the flow-based
algorithm. However, Fig. 3 shows that for observables
with larger extent such as W`⇥` with ` � 4, and par-
ticularly for �Q, large autocorrelations in the HMC and
HB samples result in estimates that deviate from the ex-
act values and have lower precision than the flow-based
estimates.

For Markov chain methods, the characteristic length of
autocorrelations for an observable O can be defined by
the integrated autocorrelation time ⌧ int

O
[69]. Fig. 4 com-

pares ⌧ int
Q for HMC and HB to that in the flow-based al-

gorithm as an indicator of how well the three methods ex-
plore the distribution of topological charge. For all three
methods, ⌧ int

Q grows as � is increased towards the con-
tinuum limit. However, this problem is far less severe for
the flow-based algorithm than for HMC or HB. For exam-
ple, the autocorrelation time in the flow-based algorithm
is approximately 10 at the largest value of �, whereas
⌧ int
Q ⇡ 4000 for HB and ⌧ int

Q ⇡ 15000 for HMC. Account-
ing for the relative cost per step of each Markov chain,
the flow-based Metropolis sampler is therefore roughly
1500 times more e�cient than HMC and 200 times more
e�cient than Heat Bath in determining topological quan-
tities. A promising possibility for further development is
mixing flow-based Markov chain steps with HMC tra-
jectories or Heat Bath sweeps to gain the benefits of
standard Markov chain steps for local observables and
of the flow-based algorithm for extended and topological
observables.

Summary.— Critical slowing down of sampling in lat-
tice gauge theories is an obstacle to precisely estimat-
ing quantities of physical interest as critical limits of the
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L2 = 16
<latexit sha1_base64="QUCpCd7XcYttfaKmLn4JOGk7EkM=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tFoNgFe6CRBshaGNhEcF8QHKGvc1esmZv99jdE8KR/2BjoYit/8fOf+MmuUITHww83pthZl4Qc6aN6347uZXVtfWN/GZha3tnd6+4f9DUMlGENojkUrUDrClngjYMM5y2Y0VxFHDaCkbXU7/1RJVmUtybcUz9CA8ECxnBxkrN24fKpVftFUtu2Z0BLRMvIyXIUO8Vv7p9SZKICkM41rrjubHxU6wMI5xOCt1E0xiTER7QjqUCR1T76ezaCTqxSh+FUtkSBs3U3xMpjrQeR4HtjLAZ6kVvKv7ndRITXvgpE3FiqCDzRWHCkZFo+jrqM0WJ4WNLMFHM3orIECtMjA2oYEPwFl9eJs1K2XPL3t1ZqXaVxZGHIziGU/DgHGpwA3VoAIFHeIZXeHOk8+K8Ox/z1pyTzRzCHzifPzNDjjY=</latexit><latexit sha1_base64="QUCpCd7XcYttfaKmLn4JOGk7EkM=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tFoNgFe6CRBshaGNhEcF8QHKGvc1esmZv99jdE8KR/2BjoYit/8fOf+MmuUITHww83pthZl4Qc6aN6347uZXVtfWN/GZha3tnd6+4f9DUMlGENojkUrUDrClngjYMM5y2Y0VxFHDaCkbXU7/1RJVmUtybcUz9CA8ECxnBxkrN24fKpVftFUtu2Z0BLRMvIyXIUO8Vv7p9SZKICkM41rrjubHxU6wMI5xOCt1E0xiTER7QjqUCR1T76ezaCTqxSh+FUtkSBs3U3xMpjrQeR4HtjLAZ6kVvKv7ndRITXvgpE3FiqCDzRWHCkZFo+jrqM0WJ4WNLMFHM3orIECtMjA2oYEPwFl9eJs1K2XPL3t1ZqXaVxZGHIziGU/DgHGpwA3VoAIFHeIZXeHOk8+K8Ox/z1pyTzRzCHzifPzNDjjY=</latexit><latexit sha1_base64="QUCpCd7XcYttfaKmLn4JOGk7EkM=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tFoNgFe6CRBshaGNhEcF8QHKGvc1esmZv99jdE8KR/2BjoYit/8fOf+MmuUITHww83pthZl4Qc6aN6347uZXVtfWN/GZha3tnd6+4f9DUMlGENojkUrUDrClngjYMM5y2Y0VxFHDaCkbXU7/1RJVmUtybcUz9CA8ECxnBxkrN24fKpVftFUtu2Z0BLRMvIyXIUO8Vv7p9SZKICkM41rrjubHxU6wMI5xOCt1E0xiTER7QjqUCR1T76ezaCTqxSh+FUtkSBs3U3xMpjrQeR4HtjLAZ6kVvKv7ndRITXvgpE3FiqCDzRWHCkZFo+jrqM0WJ4WNLMFHM3orIECtMjA2oYEPwFl9eJs1K2XPL3t1ZqXaVxZGHIziGU/DgHGpwA3VoAIFHeIZXeHOk8+K8Ox/z1pyTzRzCHzifPzNDjjY=</latexit><latexit sha1_base64="QUCpCd7XcYttfaKmLn4JOGk7EkM=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tFoNgFe6CRBshaGNhEcF8QHKGvc1esmZv99jdE8KR/2BjoYit/8fOf+MmuUITHww83pthZl4Qc6aN6347uZXVtfWN/GZha3tnd6+4f9DUMlGENojkUrUDrClngjYMM5y2Y0VxFHDaCkbXU7/1RJVmUtybcUz9CA8ECxnBxkrN24fKpVftFUtu2Z0BLRMvIyXIUO8Vv7p9SZKICkM41rrjubHxU6wMI5xOCt1E0xiTER7QjqUCR1T76ezaCTqxSh+FUtkSBs3U3xMpjrQeR4HtjLAZ6kVvKv7ndRITXvgpE3FiqCDzRWHCkZFo+jrqM0WJ4WNLMFHM3orIECtMjA2oYEPwFl9eJs1K2XPL3t1ZqXaVxZGHIziGU/DgHGpwA3VoAIFHeIZXeHOk8+K8Ox/z1pyTzRzCHzifPzNDjjY=</latexit>

x

0̂
<latexit sha1_base64="w4NO/B6flbJhbm+EqfTOi8oYeF8=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNnJbDJkdmaZ6RXCko/w4kERr36PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdop7+7tHxxWjo5bVmeG8SbTUptORC2XQvEmCpS8kxpOk0jydjS+m/ntJ26s0OoRJykPEzpUIhaMopPavRHF3J/2K1W/5s9BVklQkCoUaPQrX72BZlnCFTJJre0GfophTg0KJvm03MssTykb0yHvOqpowm2Yz8+dknOnDEisjSuFZK7+nshpYu0kiVxnQnFkl72Z+J/XzTC+CXOh0gy5YotFcSYJajL7nQyE4QzlxBHKjHC3EjaihjJ0CZVdCMHyy6ukdVkL/FrwcFWt3xZxlOAUzuACAriGOtxDA5rAYAzP8ApvXuq9eO/ex6J1zStmTuAPvM8fQtSPgQ==</latexit><latexit sha1_base64="w4NO/B6flbJhbm+EqfTOi8oYeF8=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNnJbDJkdmaZ6RXCko/w4kERr36PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdop7+7tHxxWjo5bVmeG8SbTUptORC2XQvEmCpS8kxpOk0jydjS+m/ntJ26s0OoRJykPEzpUIhaMopPavRHF3J/2K1W/5s9BVklQkCoUaPQrX72BZlnCFTJJre0GfophTg0KJvm03MssTykb0yHvOqpowm2Yz8+dknOnDEisjSuFZK7+nshpYu0kiVxnQnFkl72Z+J/XzTC+CXOh0gy5YotFcSYJajL7nQyE4QzlxBHKjHC3EjaihjJ0CZVdCMHyy6ukdVkL/FrwcFWt3xZxlOAUzuACAriGOtxDA5rAYAzP8ApvXuq9eO/ex6J1zStmTuAPvM8fQtSPgQ==</latexit><latexit sha1_base64="w4NO/B6flbJhbm+EqfTOi8oYeF8=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNnJbDJkdmaZ6RXCko/w4kERr36PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdop7+7tHxxWjo5bVmeG8SbTUptORC2XQvEmCpS8kxpOk0jydjS+m/ntJ26s0OoRJykPEzpUIhaMopPavRHF3J/2K1W/5s9BVklQkCoUaPQrX72BZlnCFTJJre0GfophTg0KJvm03MssTykb0yHvOqpowm2Yz8+dknOnDEisjSuFZK7+nshpYu0kiVxnQnFkl72Z+J/XzTC+CXOh0gy5YotFcSYJajL7nQyE4QzlxBHKjHC3EjaihjJ0CZVdCMHyy6ukdVkL/FrwcFWt3xZxlOAUzuACAriGOtxDA5rAYAzP8ApvXuq9eO/ex6J1zStmTuAPvM8fQtSPgQ==</latexit><latexit sha1_base64="w4NO/B6flbJhbm+EqfTOi8oYeF8=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNnJbDJkdmaZ6RXCko/w4kERr36PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdop7+7tHxxWjo5bVmeG8SbTUptORC2XQvEmCpS8kxpOk0jydjS+m/ntJ26s0OoRJykPEzpUIhaMopPavRHF3J/2K1W/5s9BVklQkCoUaPQrX72BZlnCFTJJre0GfophTg0KJvm03MssTykb0yHvOqpowm2Yz8+dknOnDEisjSuFZK7+nshpYu0kiVxnQnFkl72Z+J/XzTC+CXOh0gy5YotFcSYJajL7nQyE4QzlxBHKjHC3EjaihjJ0CZVdCMHyy6ukdVkL/FrwcFWt3xZxlOAUzuACAriGOtxDA5rAYAzP8ApvXuq9eO/ex6J1zStmTuAPvM8fQtSPgQ==</latexit>

1̂
<latexit sha1_base64="2ropNM7okC0cCnha51eQsUHg4HM=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNnJbDJkdmaZ6RXCko/w4kERr36PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdop7+7tHxxWjo5bVmeG8SbTUptORC2XQvEmCpS8kxpOk0jydjS+m/ntJ26s0OoRJykPEzpUIhaMopPavRHFPJj2K1W/5s9BVklQkCoUaPQrX72BZlnCFTJJre0GfophTg0KJvm03MssTykb0yHvOqpowm2Yz8+dknOnDEisjSuFZK7+nshpYu0kiVxnQnFkl72Z+J/XzTC+CXOh0gy5YotFcSYJajL7nQyE4QzlxBHKjHC3EjaihjJ0CZVdCMHyy6ukdVkL/FrwcFWt3xZxlOAUzuACAriGOtxDA5rAYAzP8ApvXuq9eO/ex6J1zStmTuAPvM8fRFmPgg==</latexit><latexit sha1_base64="2ropNM7okC0cCnha51eQsUHg4HM=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNnJbDJkdmaZ6RXCko/w4kERr36PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdop7+7tHxxWjo5bVmeG8SbTUptORC2XQvEmCpS8kxpOk0jydjS+m/ntJ26s0OoRJykPEzpUIhaMopPavRHFPJj2K1W/5s9BVklQkCoUaPQrX72BZlnCFTJJre0GfophTg0KJvm03MssTykb0yHvOqpowm2Yz8+dknOnDEisjSuFZK7+nshpYu0kiVxnQnFkl72Z+J/XzTC+CXOh0gy5YotFcSYJajL7nQyE4QzlxBHKjHC3EjaihjJ0CZVdCMHyy6ukdVkL/FrwcFWt3xZxlOAUzuACAriGOtxDA5rAYAzP8ApvXuq9eO/ex6J1zStmTuAPvM8fRFmPgg==</latexit><latexit sha1_base64="2ropNM7okC0cCnha51eQsUHg4HM=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNnJbDJkdmaZ6RXCko/w4kERr36PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdop7+7tHxxWjo5bVmeG8SbTUptORC2XQvEmCpS8kxpOk0jydjS+m/ntJ26s0OoRJykPEzpUIhaMopPavRHFPJj2K1W/5s9BVklQkCoUaPQrX72BZlnCFTJJre0GfophTg0KJvm03MssTykb0yHvOqpowm2Yz8+dknOnDEisjSuFZK7+nshpYu0kiVxnQnFkl72Z+J/XzTC+CXOh0gy5YotFcSYJajL7nQyE4QzlxBHKjHC3EjaihjJ0CZVdCMHyy6ukdVkL/FrwcFWt3xZxlOAUzuACAriGOtxDA5rAYAzP8ApvXuq9eO/ex6J1zStmTuAPvM8fRFmPgg==</latexit><latexit sha1_base64="2ropNM7okC0cCnha51eQsUHg4HM=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNnJbDJkdmaZ6RXCko/w4kERr36PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdop7+7tHxxWjo5bVmeG8SbTUptORC2XQvEmCpS8kxpOk0jydjS+m/ntJ26s0OoRJykPEzpUIhaMopPavRHFPJj2K1W/5s9BVklQkCoUaPQrX72BZlnCFTJJre0GfophTg0KJvm03MssTykb0yHvOqpowm2Yz8+dknOnDEisjSuFZK7+nshpYu0kiVxnQnFkl72Z+J/XzTC+CXOh0gy5YotFcSYJajL7nQyE4QzlxBHKjHC3EjaihjJ0CZVdCMHyy6ukdVkL/FrwcFWt3xZxlOAUzuACAriGOtxDA5rAYAzP8ApvXuq9eO/ex6J1zStmTuAPvM8fRFmPgg==</latexit>

U0(x)
<latexit sha1_base64="v6NmS5Q/7Olf2pfXd4OemuoU3gk=">AAAB7XicdVDLTgIxFO34RHyhLt00EhPcTFpAYEl04xITB0hgQjqlA5XOdNJ2jITwD25caIxb/8edf2N5mKjRk9zk5Jx7c+89QSK4Ngh9OCura+sbm5mt7PbO7t5+7uCwqWWqKPOoFFK1A6KZ4DHzDDeCtRPFSBQI1gpGlzO/dceU5jK+MeOE+REZxDzklBgrNb0eKtyf9XJ55BbPK1WMIHJLtVoJly2pYFTFFYhdNEceLNHo5d67fUnTiMWGCqJ1B6PE+BOiDKeCTbPdVLOE0BEZsI6lMYmY9ifza6fw1Cp9GEplKzZwrn6fmJBI63EU2M6ImKH+7c3Ev7xOasKaP+FxkhoW08WiMBXQSDh7Hfa5YtSIsSWEKm5vhXRIFKHGBpS1IXx9Cv8nzaKLkYuvy/n6xTKODDgGJ6AAMKiCOrgCDeABCm7BA3gCz450Hp0X53XRuuIsZ47ADzhvn9utjqg=</latexit><latexit sha1_base64="v6NmS5Q/7Olf2pfXd4OemuoU3gk=">AAAB7XicdVDLTgIxFO34RHyhLt00EhPcTFpAYEl04xITB0hgQjqlA5XOdNJ2jITwD25caIxb/8edf2N5mKjRk9zk5Jx7c+89QSK4Ngh9OCura+sbm5mt7PbO7t5+7uCwqWWqKPOoFFK1A6KZ4DHzDDeCtRPFSBQI1gpGlzO/dceU5jK+MeOE+REZxDzklBgrNb0eKtyf9XJ55BbPK1WMIHJLtVoJly2pYFTFFYhdNEceLNHo5d67fUnTiMWGCqJ1B6PE+BOiDKeCTbPdVLOE0BEZsI6lMYmY9ifza6fw1Cp9GEplKzZwrn6fmJBI63EU2M6ImKH+7c3Ev7xOasKaP+FxkhoW08WiMBXQSDh7Hfa5YtSIsSWEKm5vhXRIFKHGBpS1IXx9Cv8nzaKLkYuvy/n6xTKODDgGJ6AAMKiCOrgCDeABCm7BA3gCz450Hp0X53XRuuIsZ47ADzhvn9utjqg=</latexit><latexit sha1_base64="v6NmS5Q/7Olf2pfXd4OemuoU3gk=">AAAB7XicdVDLTgIxFO34RHyhLt00EhPcTFpAYEl04xITB0hgQjqlA5XOdNJ2jITwD25caIxb/8edf2N5mKjRk9zk5Jx7c+89QSK4Ngh9OCura+sbm5mt7PbO7t5+7uCwqWWqKPOoFFK1A6KZ4DHzDDeCtRPFSBQI1gpGlzO/dceU5jK+MeOE+REZxDzklBgrNb0eKtyf9XJ55BbPK1WMIHJLtVoJly2pYFTFFYhdNEceLNHo5d67fUnTiMWGCqJ1B6PE+BOiDKeCTbPdVLOE0BEZsI6lMYmY9ifza6fw1Cp9GEplKzZwrn6fmJBI63EU2M6ImKH+7c3Ev7xOasKaP+FxkhoW08WiMBXQSDh7Hfa5YtSIsSWEKm5vhXRIFKHGBpS1IXx9Cv8nzaKLkYuvy/n6xTKODDgGJ6AAMKiCOrgCDeABCm7BA3gCz450Hp0X53XRuuIsZ47ADzhvn9utjqg=</latexit><latexit sha1_base64="v6NmS5Q/7Olf2pfXd4OemuoU3gk=">AAAB7XicdVDLTgIxFO34RHyhLt00EhPcTFpAYEl04xITB0hgQjqlA5XOdNJ2jITwD25caIxb/8edf2N5mKjRk9zk5Jx7c+89QSK4Ngh9OCura+sbm5mt7PbO7t5+7uCwqWWqKPOoFFK1A6KZ4DHzDDeCtRPFSBQI1gpGlzO/dceU5jK+MeOE+REZxDzklBgrNb0eKtyf9XJ55BbPK1WMIHJLtVoJly2pYFTFFYhdNEceLNHo5d67fUnTiMWGCqJ1B6PE+BOiDKeCTbPdVLOE0BEZsI6lMYmY9ifza6fw1Cp9GEplKzZwrn6fmJBI63EU2M6ImKH+7c3Ev7xOasKaP+FxkhoW08WiMBXQSDh7Hfa5YtSIsSWEKm5vhXRIFKHGBpS1IXx9Cv8nzaKLkYuvy/n6xTKODDgGJ6AAMKiCOrgCDeABCm7BA3gCz450Hp0X53XRuuIsZ47ADzhvn9utjqg=</latexit>

U1(x+ 0̂)
<latexit sha1_base64="LDMSrDT+KFfgx8EDwaZETfgYZgg=">AAAB9XicdVDLSgMxFM34rPVVdekmWISKMCRtbbssunFZwWkL7VgyaaYNzTxIMmoZ+h9uXCji1n9x59+YPgQVPXDhcM693HuPFwuuNEIf1tLyyuraemYju7m1vbOb29tvqiiRlDk0EpFse0QxwUPmaK4Fa8eSkcATrOWNLqZ+65ZJxaPwWo9j5gZkEHKfU6KNdOP0cOH+tDskOkWTk14uj+ziWaWKEUR2qVYr4bIhFYyquAKxjWbIgwUavdx7tx/RJGChpoIo1cEo1m5KpOZUsEm2mygWEzoiA9YxNCQBU246u3oCj43Sh34kTYUaztTvEykJlBoHnukMiB6q395U/MvrJNqvuSkP40SzkM4X+YmAOoLTCGCfS0a1GBtCqOTmVkiHRBKqTVBZE8LXp/B/0izaGNn4qpyvny/iyIBDcAQKAIMqqINL0AAOoECCB/AEnq0769F6sV7nrUvWYuYA/ID19gmLXZHl</latexit><latexit sha1_base64="LDMSrDT+KFfgx8EDwaZETfgYZgg=">AAAB9XicdVDLSgMxFM34rPVVdekmWISKMCRtbbssunFZwWkL7VgyaaYNzTxIMmoZ+h9uXCji1n9x59+YPgQVPXDhcM693HuPFwuuNEIf1tLyyuraemYju7m1vbOb29tvqiiRlDk0EpFse0QxwUPmaK4Fa8eSkcATrOWNLqZ+65ZJxaPwWo9j5gZkEHKfU6KNdOP0cOH+tDskOkWTk14uj+ziWaWKEUR2qVYr4bIhFYyquAKxjWbIgwUavdx7tx/RJGChpoIo1cEo1m5KpOZUsEm2mygWEzoiA9YxNCQBU246u3oCj43Sh34kTYUaztTvEykJlBoHnukMiB6q395U/MvrJNqvuSkP40SzkM4X+YmAOoLTCGCfS0a1GBtCqOTmVkiHRBKqTVBZE8LXp/B/0izaGNn4qpyvny/iyIBDcAQKAIMqqINL0AAOoECCB/AEnq0769F6sV7nrUvWYuYA/ID19gmLXZHl</latexit><latexit sha1_base64="LDMSrDT+KFfgx8EDwaZETfgYZgg=">AAAB9XicdVDLSgMxFM34rPVVdekmWISKMCRtbbssunFZwWkL7VgyaaYNzTxIMmoZ+h9uXCji1n9x59+YPgQVPXDhcM693HuPFwuuNEIf1tLyyuraemYju7m1vbOb29tvqiiRlDk0EpFse0QxwUPmaK4Fa8eSkcATrOWNLqZ+65ZJxaPwWo9j5gZkEHKfU6KNdOP0cOH+tDskOkWTk14uj+ziWaWKEUR2qVYr4bIhFYyquAKxjWbIgwUavdx7tx/RJGChpoIo1cEo1m5KpOZUsEm2mygWEzoiA9YxNCQBU246u3oCj43Sh34kTYUaztTvEykJlBoHnukMiB6q395U/MvrJNqvuSkP40SzkM4X+YmAOoLTCGCfS0a1GBtCqOTmVkiHRBKqTVBZE8LXp/B/0izaGNn4qpyvny/iyIBDcAQKAIMqqINL0AAOoECCB/AEnq0769F6sV7nrUvWYuYA/ID19gmLXZHl</latexit><latexit sha1_base64="LDMSrDT+KFfgx8EDwaZETfgYZgg=">AAAB9XicdVDLSgMxFM34rPVVdekmWISKMCRtbbssunFZwWkL7VgyaaYNzTxIMmoZ+h9uXCji1n9x59+YPgQVPXDhcM693HuPFwuuNEIf1tLyyuraemYju7m1vbOb29tvqiiRlDk0EpFse0QxwUPmaK4Fa8eSkcATrOWNLqZ+65ZJxaPwWo9j5gZkEHKfU6KNdOP0cOH+tDskOkWTk14uj+ziWaWKEUR2qVYr4bIhFYyquAKxjWbIgwUavdx7tx/RJGChpoIo1cEo1m5KpOZUsEm2mygWEzoiA9YxNCQBU246u3oCj43Sh34kTYUaztTvEykJlBoHnukMiB6q395U/MvrJNqvuSkP40SzkM4X+YmAOoLTCGCfS0a1GBtCqOTmVkiHRBKqTVBZE8LXp/B/0izaGNn4qpyvny/iyIBDcAQKAIMqqINL0AAOoECCB/AEnq0769F6sV7nrUvWYuYA/ID19gmLXZHl</latexit>

U†
0 (x+ 1̂)
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Application: U(1) field theory
First gauge theory application: U(1) field theory
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Phiala Shanahan, MIT[Kanwar et al., PRL 125, 121601 (2020)] 

Prior distribution chosen to be uniform

Gauge-equivariant coupling layers
24 coupling layers 
Kernels h: mixtures of non-compact projections,  
6 components, parameterised with convolutional 
NNs (i.e., NN output gives params. of NCP)
NNs with 2 hidden layers with 8x8 convolutional  
filters, kernel size 3

Train using shifted KL loss with Adam 
optimizer

Stopping criterion: loss plateau
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Application: U(1) field theory
First gauge theory application: U(1) field theory
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Phiala Shanahan, MIT

Application: U(1) field theory

[2008.05456 (2020), PRL 125, 121601 (2020), 2002.02428 (2020)]

Sampling of the topological charge

Success:  Critical slowing down is significantly reduced


Cost:      Up-front training of the model

First gauge theory application: U(1) field theory


x

P (x)
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We define a class of machine-learned flow-based sampling algorithms for lattice gauge theories
that are gauge-invariant by construction. We demonstrate the application of this framework to
U(1) gauge theory in two spacetime dimensions, and find that near critical points in parameter
space the approach is orders of magnitude more e�cient at sampling topological quantities than
more traditional sampling procedures such as Hybrid Monte Carlo and Heat Bath.

Many important physical theories are described by La-
grangians that are invariant under local symmetry trans-
formations that form Lie groups; such theories are named
gauge theories. For example, the Standard Model of
particle physics, which is our most accurate descrip-
tion of Nature at the shortest length-scales, is a quan-
tum field theory centered around the action of three
gauge groups [1–4], and several important condensed
matter systems can be described by e↵ective gauge theo-
ries [5–8]. In the strong-coupling limit, these theories are
non-perturbative, and numerical formulations on discrete
spacetime lattices o↵er the only known way to compute
properties of interest from first principles.

Calculations within lattice frameworks typically pro-
ceed by estimating expectation values of observables
using Markov Chain Monte Carlo (MCMC) to sam-
ple from thermodynamic distributions or Euclidean-time
path integrals. In both cases, samples U (typically high-
dimensional) are drawn from an exponentially weighted
distribution p(U) = e�S(U)/Z, where the physics is en-
coded in an energy or action functional S(U), and the
normalizing constant Z is unknown. When MCMC sam-
pling from the distribution p(U) is e�cient, precise phys-
ical predictions can be made from the theory. However,
as the model parameters are tuned towards criticality,
e.g. to describe universal properties of condensed mat-
ter theories or to access the continuum limit of quantum
field theories, critical slowing down (CSD) can cause the
computational cost of sampling to diverge [9].

Specialized approaches have been developed to avoid
CSD for specific theories [10–19]. For several theories of
interest, however, CSD obstructs calculations. This is
true in particular for the lattice formulation of quantum
chromodynamics (QCD) [20–22], which enables calcula-
tions of non-perturbative phenomena arising from the
Standard Model of particle physics. Recently, there has
been progress in the development of flow-based gener-
ative models which can be trained to directly produce
samples from a given probability distribution; early suc-
cess has been demonstrated in theories of bosonic matter,
spin systems, molecular systems, and for Brownian mo-
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FIG. 1. Standard approaches (HMC and HB) to MCMC sam-
pling for U(1) gauge theory explore the distribution of topo-
logical charge Q very slowly compared with the flow-based
approach introduced here. Results are shown for coupling
� = 7 on a 16⇥ 16 lattice, see Eq. (6). The first (second) half
of the Markov chain history is displayed for HMC (HB).

tion [23–33]. This progress builds on the great success of
flow-based approaches for image, text, and structured ob-
ject generation [34–41], as well as non-flow-based machine
learning techniques applied to sampling for physics [42–
46]. If flow-based algorithms can be designed and imple-
mented at the scale of state-of-the-art calculations, they
would enable e�cient sampling in lattice theories that
are currently hindered by CSD.

In this Letter, we develop a provably correct flow-based
sampling algorithm designed for lattice gauge theories,
including lattice QCD. We demonstrate the application
of this approach to U(1) gauge theory in two spacetime
dimensions. This theory is solvable, and thus provides a
testing ground where the accuracy of numerical methods
can be checked. Two standard MCMC approaches, Hy-
brid Monte Carlo (HMC) [47] and Heat Bath (HB) [48–
50], su↵er from critical slowing down in this theory; for
example, Fig. 1 depicts Markov chain histories for sam-
pling near the continuum limit, in which both methods
explore topological sectors very slowly. Using our flow-
based algorithm, independent samples of field configu-
rations are produced with appropriate frequency from
each topological sector, enabling far more accurate esti-
mation of topological quantities at a given computational
cost. Critical to the success of this approach is enforc-
ing exact gauge symmetry in the flow-based distribution:
when the symmetry is enforced, we can successfully train
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FIG. 2. An example of a variable splitting based on a tiled
4 ⇥ 1 pattern with an actively updated link U i ⌘ Uµ(x) and
1 ⇥ 1 loop U iSi ⌘ Pµ⌫(x) located at x, a passively updated
1⇥ 1 loop at ex = x� ⌫̂, and two frozen traced 1⇥ 1 loops at
x+ ⌫̂ and x+ 2⌫̂ included in the set Ii.

which implies that U 0i
! eU 0i transforms according to

Eq. (2),

eU 0i = h
�
⌦(x) U iSi ⌦†(x)|Ii

�
⌦(x)Si†⌦†(x + µ̂)

= ⌦(x)U 0i⌦†(x + µ̂).
(5)

To ensure invertibility, the product of links Si must not
contain any links in UA.

For an Abelian group, the transformation property
in Eq. (4) is trivially satisfied by any kernel. In
the U(1) gauge theory considered below, we there-
fore define the kernel using invertible flows parame-
terized by neural networks. For non-Abelian theo-
ries, it has been shown that it is possible to con-
struct invertible functions on spheres [63] and surjec-
tive functions on general Lie groups [64]. If these ap-
proaches can be generalized to produce invertible func-
tions with convergent power expansions, they will sat-
isfy the necessary kernel transformation property, since
h(XWX†) =

P
n ↵n(XWX†)n = X h(W ) X†.

An example of a variable splitting suitable for both
Abelian and non-Abelian gauge theories is given by the
pattern depicted in Fig. 2. In this example, the set of
updated links UA consists of vertical links spaced by 4
sites, and the products U iSi are 1 ⇥ 1 loops adjacent to
each U i. This is su�ciently sparse such that every Si

is independent of all updated links in UA, and a non-
trivial set of invariants Ii (e.g. all traced 1⇥ 1 loops that
are not adjacent to updated links) can be constructed
to parametrize the transformation. Composing coupling
layers using rotations and o↵sets of the pattern allows all
links to be updated.2

2 For example, composing 8 such layers is su�cient to update all
links in 2D.

Using gauge-equivariant coupling layers constructed in
terms of kernels generalizes the “trivializing map” pro-
posed in Ref. [65]. There, repeatedly applying a spe-
cific kernel based on gradients of the action theoretically
trivializes a gauge theory, i.e. maps the Euclidean time
distribution to a uniform one. The family of gauge equiv-
ariant flows defined here includes the trivializing map in
the limit of a large number of coupling layers and arbi-
trarily expressive kernel, indicating that in this limiting
case exact sampling as described in Ref. [65] is possible.
However, the approach presented here allows for more
general and inexpensive parametrizations of h. These
can be optimized to produce flows that similarly trivial-
ize the theory, and which may have a lower cost of evalu-
ation than implementations of the analytical trivializing
map [66].
Application to U(1) gauge theory.— Gauge theory with

a U(1) gauge group defined in two spacetime dimensions
is the quenched limit of 1 + 1D electrodynamics, i.e. the
Schwinger model [67]. The full Schwinger model repro-
duces many features of quantum chromodynamics (con-
finement, an axial anomaly, topology, and chiral symme-
try breaking) while being analytically tractable. Even in
the quenched limit, the well-defined gauge field topology
results in severe critical slowing down of MCMC meth-
ods for sampling lattice discretizations of the model as
the coupling is taken to criticality. We consider the lat-
tice discretization given by the Wilson gauge action [68],

S(U) := ��
X

x

Re P (x), (6)

where P (x) is the plaquette at x defined in terms of link
variables Uµ(x) 2 U(1),

P (x) := U0(x)U1(x + 0̂)U†

0 (x + 1̂)U†

1 (x), (7)

and x = (x0, x1) runs over coordinates in an L⇥L square
lattice with periodic boundary conditions. Physical infor-
mation may be extracted from the model by considering
expectation values of observables O under the Euclidean
time path integral,

hOi :=
1

Z

Z
DU O(U)e�S(U), (8)

where
R

DU denotes integration over the product of
Haar measures for each link, and Z =

R
DU e�S(U). In

this study, three key observables were considered:

1. Expectation values of powers of plaquettes.

2. Expectation values of ` ⇥ ` Wilson loops W`⇥` =Q
x2`⇥` P (x).

3. Topological susceptibility �Q = hQ2/V i, where
topological charge Q := 1

2⇡

P
x arg (P (x)) is de-

fined in terms of plaquette phase in the principal
interval, arg (P (x)) 2 [�⇡, ⇡]. }Conventional 
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FIG. 3. Left: estimates of average Wilson loops hW`⇥`i mea-
sured on the finest ensemble studied here (� = 7). Right:
estimates of topological susceptibility measured on the three
finest ensembles studied here (� = 5, 6, 7). All values are plot-
ted as ratios to the exact results. The flow-based estimates
are consistent with the exact values, while the HMC and Heat
Bath estimates have larger uncertainties and also significantly
deviate from the exact values in some cases.

To investigate critical slowing down, we studied the
theory at a fixed lattice size, L = 16, using seven choices
of the parameter � = {1, 2, 3, 4, 5, 6, 7}; the theory ap-
proaches the continuum limit as � ! 1. For each pa-
rameter choice, we trained gauge invariant flow-based
models using a uniform prior distribution and a composi-
tion of 24 gauge-equivariant coupling layers. The kernels
h were chosen to be mixtures of Non-Compact Projec-
tions [63], which are suitable for U(1) group elements;
in particular, we used 6 components for each mixture
and parameterized each transformation with a convolu-
tional neural network. The model architecture was held
fixed across all choices of �, ensuring identical cost to
draw samples for each parameter choice. To train the
models, we minimized the Kullback-Leibler divergence
between the model density q(U) and the target density
e�S(U)/Z. Training was halted when the loss function
reached a plateau. For this proof-of-principle study, we
did not perform extensive optimization over the variable
splitting pattern, neural network architecture, or train-
ing hyperparameters, and it is likely that better models
can be trained.

After training, the flow-based models were used to gen-
erate proposals for a Metropolis independence Markov
chain [25], producing ensembles of 100, 000 samples each.
For comparison, ensembles of identical size were pro-
duced using the HMC and Heat Bath algorithms. For
all choices of �, we fixed the HMC trajectory length to
achieve > 80% acceptance rate when using a leapfrog in-
tegrator with 5 steps. Each HB step was defined as one
sweep, i.e. a single update of every link. To within 10%,
the computational cost per HMC trajectory was equal
to the cost per proposal from the flow-based model in
a single-threaded CPU environment, while the cost per
Heat Bath step was half that of HMC or flow.

Using samples from a flow-based model as proposals
within a Markov chain ensures unbiased estimates after
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FIG. 4. Integrated autocorrelation time for the topological
charge, ⌧ int

Q , measured on ensembles of 16 ⇥ 16 lattices gen-
erated using HMC, Heat Bath, and the flow-based algorithm.
Ten replicas of each ensemble were used to estimate errors,
which are smaller than the plot markers for most points.

thermalization; at the finite ensemble size used here, all
observables were found to agree with analytical results
within statistical uncertainties. Of the observables we
studied, local quantities like powers of plaquettes and
expectation values of small Wilson loops were estimated
more precisely by HMC and HB than with the flow-based
algorithm. However, Fig. 3 shows that for observables
with larger extent such as W`⇥` with ` � 4, and par-
ticularly for �Q, large autocorrelations in the HMC and
HB samples result in estimates that deviate from the ex-
act values and have lower precision than the flow-based
estimates.

For Markov chain methods, the characteristic length of
autocorrelations for an observable O can be defined by
the integrated autocorrelation time ⌧ int

O
[69]. Fig. 4 com-

pares ⌧ int
Q for HMC and HB to that in the flow-based al-

gorithm as an indicator of how well the three methods ex-
plore the distribution of topological charge. For all three
methods, ⌧ int

Q grows as � is increased towards the con-
tinuum limit. However, this problem is far less severe for
the flow-based algorithm than for HMC or HB. For exam-
ple, the autocorrelation time in the flow-based algorithm
is approximately 10 at the largest value of �, whereas
⌧ int
Q ⇡ 4000 for HB and ⌧ int

Q ⇡ 15000 for HMC. Account-
ing for the relative cost per step of each Markov chain,
the flow-based Metropolis sampler is therefore roughly
1500 times more e�cient than HMC and 200 times more
e�cient than Heat Bath in determining topological quan-
tities. A promising possibility for further development is
mixing flow-based Markov chain steps with HMC tra-
jectories or Heat Bath sweeps to gain the benefits of
standard Markov chain steps for local observables and
of the flow-based algorithm for extended and topological
observables.

Summary.— Critical slowing down of sampling in lat-
tice gauge theories is an obstacle to precisely estimat-
ing quantities of physical interest as critical limits of the

Cost per independent sample
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FIG. 3. Left: estimates of average Wilson loops hW`⇥`i mea-
sured on the finest ensemble studied here (� = 7). Right:
estimates of topological susceptibility measured on the three
finest ensembles studied here (� = 5, 6, 7). All values are plot-
ted as ratios to the exact results. The flow-based estimates
are consistent with the exact values, while the HMC and Heat
Bath estimates have larger uncertainties and also significantly
deviate from the exact values in some cases.

To investigate critical slowing down, we studied the
theory at a fixed lattice size, L = 16, using seven choices
of the parameter � = {1, 2, 3, 4, 5, 6, 7}; the theory ap-
proaches the continuum limit as � ! 1. For each pa-
rameter choice, we trained gauge invariant flow-based
models using a uniform prior distribution and a composi-
tion of 24 gauge-equivariant coupling layers. The kernels
h were chosen to be mixtures of Non-Compact Projec-
tions [63], which are suitable for U(1) group elements;
in particular, we used 6 components for each mixture
and parameterized each transformation with a convolu-
tional neural network. The model architecture was held
fixed across all choices of �, ensuring identical cost to
draw samples for each parameter choice. To train the
models, we minimized the Kullback-Leibler divergence
between the model density q(U) and the target density
e�S(U)/Z. Training was halted when the loss function
reached a plateau. For this proof-of-principle study, we
did not perform extensive optimization over the variable
splitting pattern, neural network architecture, or train-
ing hyperparameters, and it is likely that better models
can be trained.

After training, the flow-based models were used to gen-
erate proposals for a Metropolis independence Markov
chain [25], producing ensembles of 100, 000 samples each.
For comparison, ensembles of identical size were pro-
duced using the HMC and Heat Bath algorithms. For
all choices of �, we fixed the HMC trajectory length to
achieve > 80% acceptance rate when using a leapfrog in-
tegrator with 5 steps. Each HB step was defined as one
sweep, i.e. a single update of every link. To within 10%,
the computational cost per HMC trajectory was equal
to the cost per proposal from the flow-based model in
a single-threaded CPU environment, while the cost per
Heat Bath step was half that of HMC or flow.

Using samples from a flow-based model as proposals
within a Markov chain ensures unbiased estimates after
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Q , measured on ensembles of 16 ⇥ 16 lattices gen-
erated using HMC, Heat Bath, and the flow-based algorithm.
Ten replicas of each ensemble were used to estimate errors,
which are smaller than the plot markers for most points.

thermalization; at the finite ensemble size used here, all
observables were found to agree with analytical results
within statistical uncertainties. Of the observables we
studied, local quantities like powers of plaquettes and
expectation values of small Wilson loops were estimated
more precisely by HMC and HB than with the flow-based
algorithm. However, Fig. 3 shows that for observables
with larger extent such as W`⇥` with ` � 4, and par-
ticularly for �Q, large autocorrelations in the HMC and
HB samples result in estimates that deviate from the ex-
act values and have lower precision than the flow-based
estimates.

For Markov chain methods, the characteristic length of
autocorrelations for an observable O can be defined by
the integrated autocorrelation time ⌧ int

O
[69]. Fig. 4 com-

pares ⌧ int
Q for HMC and HB to that in the flow-based al-

gorithm as an indicator of how well the three methods ex-
plore the distribution of topological charge. For all three
methods, ⌧ int

Q grows as � is increased towards the con-
tinuum limit. However, this problem is far less severe for
the flow-based algorithm than for HMC or HB. For exam-
ple, the autocorrelation time in the flow-based algorithm
is approximately 10 at the largest value of �, whereas
⌧ int
Q ⇡ 4000 for HB and ⌧ int

Q ⇡ 15000 for HMC. Account-
ing for the relative cost per step of each Markov chain,
the flow-based Metropolis sampler is therefore roughly
1500 times more e�cient than HMC and 200 times more
e�cient than Heat Bath in determining topological quan-
tities. A promising possibility for further development is
mixing flow-based Markov chain steps with HMC tra-
jectories or Heat Bath sweeps to gain the benefits of
standard Markov chain steps for local observables and
of the flow-based algorithm for extended and topological
observables.

Summary.— Critical slowing down of sampling in lat-
tice gauge theories is an obstacle to precisely estimat-
ing quantities of physical interest as critical limits of the

Integrated autocorrelation time

[2008.05456 (2020),  

PRL 125, 121601 (2020),  

2002.02428 (2020)]

SUCCESS! 
Proof-of-principle of efficient, 
exact, ML algorithm for LQFT 

Jupyter notebook tutorial: arXiv:2101.08176 

Significant work required to scale 
to state-of-the-art
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coordinates, and x 2 R3 is a point on the embedded sphere
in Euclidean coordinates.

On SU(2) ⌘ S3, the target was a mixture of the same
form where µ1 = (1.7,�1.5, 2.3), µ2 = (�3.0, 1.0, 3.0),
µ3 = (0.6,�2.6, 4.5), µ4 = (�2.5, 3.0, 5.0), and x 2 R4

is a point on the embedded sphere in Euclidean coordinates.

G. Misaligned Density on S2

The recursive formulas shown in Equations (11) to (13)
require choosing a sequence of axes in order to construct the
cylindrical coordinate system. This may introduce artifacts
to the density related to this choice of axes. To test if this
results in numerical problems, we compare the flow from
Equations (11) to (13) on a target density that forms a non-
axis-aligned ring against a composition of the same flow
with a learned rotation.

The results of this experiment are shown in Figure 9. We
compared both large (Ks = 32, Km = 12) and small
(Ks = 3, Km = 3) versions of the auto-regressive Möbius-
Spline flow and observed no significant differences between
the two models on S2.

More experiments would be necessary to investigate this
potential effect in higher dimensions.

H. Application: Multi-Link Robot Arm
As a concrete application of flows on tori, we consider
the problem of approximating the posterior density over
joint angles ✓1,...,6 of a 6-link 2D robot arm, given (soft)
constraints on the position of the tip of the arm. The possible
configurations of this arm are points in T6. The position rk
of a joint k = 1, . . . , 6 of the robot arm is given by

rk = rk�1 +

0

@lk cos

0

@
X

jk

✓j

1

A, lk sin

0

@
X

jk

✓j

1

A

1

A,

where r0 = (0, 0) is the position where the arm is affixed,
lk = 0.2 is the length of the k-th link, and ✓k is the angle of
the k-th link in a local reference frame. The constraint on the
position of the tip of the arm, r6, is expressed in the form
of a Gaussian-mixture likelihood p(r6 | ✓1,...,6) with two
components. The prior p(✓1,...,6) is taken to be a uniform
distribution on T6. The experimental results are illustrated
in Figure 10.

I. Application: Learning from samples
In most of the experiments shown on this paper, we trained
the models to fit a target density known up to a normalization
constant (i.e. an inference problem). In this experiment we
train our flow directly on data samples instead.

Training a flow-based model from data samples via max-
imum likelihood requires an explicit computation of the
inverse map as shown in Equation (2). To demonstrate this
is feasible with data coming from a non-trivial target density
on the sphere S2 (i.e. that would require a large number
of mixture components from simpler densities such as von
Mises), we created a dataset of samples on the sphere com-
ing from a density shaped as Earth’s continental map as
shown in Figure 11 (left).

We trained a flow built from stacking two autoregressive
flows. Each flow in the stack used circular splines and
standard splines on the interval. The model was trained to
maximize the likelihood of the dataset for 100,000 training
steps. Both splines used Ks = 80 segments. The neural
networks producing the spline parameters are the same as
for the other experiments. In Figure 11 (middle) we show
samples from the learned model overlaid on Earth’s map
and in Figure 11 (right) we show a heat map of the learned
density.

Robotics

Molecular 
genetics and 
drug design
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Flow-based generation of QCD gauge fields at scale would

Enable fast, embarrassingly parallel sampling  
→ high-statistics calculations

Allow parameter-space exploration (re-tune trained models)

Reduce storage challenges (store only model, not samples)

Implementations of flow models at scale (e.g., 4D, 643x128) 
conceptually straightforward, but work needed

Training paradigms

Model parallelism

Exascale-ready implementations

….

ML-accelerated algorithms have huge potential to enable 
 first-principles nuclear physics studies

Emergence  
of complex 
structure in 
nature

Backgrounds and 
benchmarks for 
searches for new 
physics
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