

PROTONS \& NEUTRONS

QUARKS, GLUONS AND THE QUANTUM VACUUM

The structure of matter

The Standard Model of nuclear and particle physics

The structure of matter

BUT

 The Standard Model isn't everything- Dark matter and dark energy
- Neutrino masses
- Matter-antimatter asymmetry
- Gravity
- Naturalness problems
- ...

NORMAL MATTER

The structure of matter

$$
\begin{gathered}
\text { Understanding the quark and gluon } \\
\text { structure of matter }
\end{gathered}
$$

Emergence of complex structure in nature

The structure of matter

First-principles studies of the Standard Model of nuclear and particle physics

- Demand extreme-scale computation

- Require guarantees of exactness, incorporation of complex symmetries

The structum un

E.g., Not enough

First-principl supercomputing in the world to Model of nuc compute Standard Model prediction for dark matter scattering from detectors!

- Demand extreme-scale computation

- Require guarantees of exactness, incorporation of complex symmetries

Acceleration via "AB-INITIO Al"

IAIFI: Ab-initio AI

Machine learning that incorporates first principles, best practices, and domain knowledge from fundamental physics

The NSF AI Institute for Artificial Intelligence and Fundamental Interactions (IAIFI) "ye-phi"

AB-INITO AI FOR AB-INTITO STUDIES OF THE STANDARD MODEL OF PARTICLE PHYSICS

Strong interactions

Study nuclear structure from the strong interactions

Quantum Chromodynamics (QCD)

Strongest of the four forces in nature
Forms other types

Binds quarks and gluons into protons, neutrons, pions etc.

Binds protons and neutrons into nuclei
of exotic matter e.g., quark-gluon plasma

Strong interactions

Interaction strength depends on energy

[Gross, Politzer, Wilczek, Nobel 2004]

Lattice QCD

$$
\begin{gathered}
\text { Numerical first-principles approach to } \\
\text { non-perturbative QCD }
\end{gathered}
$$

- QCD equations \Longleftrightarrow integrals over the values of quark and gluon fields on each site/link (OCD path integral)
- ~1012 variables (for state-of-the-art)

- Evaluate by importance sampling
- Paths near classical action dominate
- Calculate physics on a set (ensemble) of samples of the quark and gluon fields

Lattice QCD

> Numerical first-principles approach to non-perturbative QCD

4D Euclidean space-time grid

- Non-zero lattice spacing (take limit as spacing becomes small)
- Volume $L^{3} \times T \approx 64^{3} \times 128$

Approximate the QCD path integral by Monte Carlo

$$
\langle\mathcal{O}\rangle=\frac{1}{Z} \int \mathcal{D} A \mathcal{D} \bar{\psi} \mathcal{D} \psi \mathcal{O}[A, \bar{\psi} \psi] e^{-S[A, \bar{\psi} \psi]} \rightarrow\langle\mathcal{O}\rangle \simeq \frac{1}{N_{\mathrm{conf}}} \sum_{i}^{N_{\mathrm{conf}}} \mathcal{O}\left(\left[U^{i}\right]\right)
$$

with field configurations U^{i} distributed according to $e^{-S[U]}$

Lattice QCD

Generate field configurations $\phi(x)$ with probability

$$
P[\phi(x)] \sim e^{-S[\phi(x)]}
$$

- Gauge field configurations represented by
~ 1010 links $U_{\mu}(x)$ encoded as $S U(3)$ matrices
(3×3 complex matrix M with $\operatorname{det}[M]=1, M^{-1}=M^{\dagger}$) i.e., $\sim 10^{12}$ double precision numbers
- Configurations sample probability distribution corresponding to LQCD action $S[\phi]$ (function that defines the quark and gluon dynamics)

Weighted averages over configurations determine
 physical observables of interest

- Calculations use $\sim 10^{3}$ configurations

Generate QCD gauge fields

QCD gauge field configurations sampled via

 Hamiltonian dynamics + Markov Chain Monte Carlo

Generate QCD gauge fields

Generate field configurations $\phi(x)$ with probability

$$
P[\phi(x)] \sim e^{-S[\phi(x)]}
$$

Hamiltonian/Hybrid Monte Carlo

Burn-in time and correlation length dictated by Markov chain 'autocorrelation time': shorter autocorrelation time implies less computational cost

Generate QCD gauge fields

QCD gauge field configurations sampled via Hamiltonian dynamics + Markov Chain Monte Carlo

Updates diffusive
Lattice spacing

0

Number of updates to change fixed
 physical length scale
"Critical slowing-down" of generation of uncorrelated samples

Generate QCD gauge fields

QCD gauge field configurations sampled via Hamiltonian dynamics + Markov Chain Monte Carlo

Updates diffusive
Lattice spacing

0

Number of updates
to change fixed
 physical length scale
"Critical slowing-down" of generation of uncorrelated samples

Generate QCD gauge fields

QCD gauge field configurations sampled via Hamiltonian dynamics + Markov Chain Monte Carlo

Updates diffusive
Lattice spacing

0

Number of updates
to change fixed
 physical length scale
"Critical slowing-down" of generation of uncorrelated samples

Generate QCD gauge fields

QCD gauge field configurations sampled via

Hamiltonian dynamics + Markov Chain Monte Carlo

Machine learning for LQCD

Worldwide efforts to apply ML tools to many aspects of the lattice QCD workflow

Field configuration generation by e.g.,

- Multi-scale approaches
- Accelerated HMC
- Direct sampling methods

Shanahan et al., Phys.Rev.D 97 (2018) Albergo et al., Phys.Rev.D 100 (2019) Rezende et al., 2002.02428 (2020)
Kanwar et al., Phys.Rev.Lett. I 25 (2020) Boyda et al., 2008.05456 (2020)

Tanaka and Tomiya, I $7 \mid 2.03893$ (20|7) Zhou et al., Phys.Rev.D 100 (20।9) Li et al., PRX IO (2020) Pawlowski and Urban I 8 II. 03533 (2020) Nagai, Tanaka, Tomiya 2010.11900 (2020) Luo, Clark Stokes, 20 I 2.05232 (2020) Favoni et al, 20I2.1290I (202I) Luo et al, 2 I 01.07243 (202I)

Efficient computations of correlation functions/observables
Yoon, Bhattacharya, Gupta, Phys. Rev. D I00, 0 I 4504 (2019)
Zhang et al, Phys. Rev. D I 0 I, 0345 I 6 (2020)
Nicoli et al., 2007.07II 5 (2020)
Sign-problem avoidance via contour deformation of path integrals
Alexandruet al., Phys. Rev. Lett. 121 (2020),
Detmold et al., 2003.059|4 (2020)

Analysis, order parameters, insights Tanaka and Tomiya, Journal of the Physical Society of Japan, 86 (2017)
Wetzel and Scherzer, Phys. Rev. B 96 (20|7)
S. Blücher et al., Phys. Rev. D IOI (2020)

Boyda et al., 2009.I 097 I (2020)
*Early developmental stage - many of these papers use toy theories instead of QCD *Much more related work in e.g., condensed matter context

Machine learning for LQCD

Worldwide efforts to apply ML tools to many aspects of the lattice QCD workflow
Approaches man by e.g. field theory rigorous/y presumen applic preserve quante imits
NiTIO AI Efficient compuan functions/observables Yoon, Bhattacharya, Gupta, Phys. Rev. D I 00, 01
Zhang et al, Phys. Rev. D 10 I, 034516 (2020) Nicoli et al., 2007.07 I I 5 (2020)

Sign-problem avoidance via contour deformation of path integrals
Alexandruet al., Phys. Rev. Lett. 121 (2020),
Detmold et al., 2003.059। 4 (2020)

Generate QCD gauge fields

Test case: scalar lattice field theory

- One real number $\phi(x) \in(-\infty, \infty)$ per lattice site \times (2D lattice)

- Action: kinetic terms and quartic coupling

$$
S(\phi)=\sum_{x}\left(\sum_{y} \frac{1}{2} \phi(x) \square(x, y) \phi(y)+\frac{1}{2} m^{2} \phi(x)^{2}+\lambda \phi(x)^{4}\right)
$$

Generate field configurations $\phi(x)$ with probability

$$
P[\phi(x)] \sim e^{-S[\phi(x)]}
$$

Generate QCD gauge fields

Generate field configurations $\phi(x)$ with probability

$$
P[\phi(x)] \sim e^{-S[\phi(x)]}
$$

Parallels with image generation problem

Machine learning QCD

Ensemble of lattice QCD gauge fields

- Ensemble of gauge fields has meaning
- $64^{3} \times 128 \times 4 \times N_{c}{ }^{2} \times 2$ $\simeq 10^{9}$ numbers
- ~ 1000 samples
- Long-distance correlations are important
- Gauge and translationinvariant with periodic boundaries

CIFAR benchmark image set for machine learning

- Each image has meaning
- 32×32 pixels $\times 3$ cols
$\simeq 3000$ numbers

■ 60000 samples

- Local structures are important
- Translation-invariance within frame

Machine learning QCD

Ensemble of lattice QCD gauge fields

Ensemble of gauge fields has meaning
$\square 64^{3} \times 128 \times 4 \times N_{c}{ }^{2} \times 2$ $\simeq 10^{9}$ numbers

- 1000 samples
- Long-distance correlations are important
- Gauge and translationinvariant with periodic boundaries

Physics is invariant under specific field transformations
\square Rotation, translation (4D), with boundary conditions

Encode same physics

Machine learning QCD

Ensemble of lattice QCD gauge fields

Ensemble of gauge fields has meaning
$-64^{3} \times 128 \times 4 \times N_{c}{ }^{2} \times 2$
$\simeq 10^{9}$ numbers

- 1000 samples
- Long-distance correlations are important
- Gauge and translationinvariant with periodic boundaries

Physics is invariant under specific field transformations

Gauge transformation

$U_{\mu}(x) \rightarrow \Omega(x) U_{\mu}(x) \Omega^{\dagger}(x+\hat{\mu})$ for all $\Omega(x) \in \operatorname{SU}(3)$

Gauge field
configuration

Encode same physics

Machine learning QCD

Ensemble of lattice QCD gauge fields
Ne frauge fields has custom ML for

CIFAR benchmark image set for machine learning

- Each image has meaning
132×32 pixels $\times 3$ cols physias troumbers

AB-INITIO from the

ground

- Gauge and translationinvariant with periodic boundaries

Generative flow models

Flow-based models learn a change-of-variables that transforms a known distribution to the desired distribution [Rezende \& Mohamed 1505.05770]
Can be made exact through accept/reject!

Easily sampled

Generative flow models

Flow-based models learn a change-of-variables that transforms a known distribution to the desired distribution [Rezende \& Mohamed 1505.05770]

Can be made exact through accept/reject!

Training the model

Target distribution is known up to normalisation

$$
p(\phi)=e^{-S(\phi)} / Z
$$

Train to minimise shifted KL divergence: [Zhang, E, Wang 1809.10188]

Exactness via Markov chain

Guarantee exactness of generated distribution by forming a Markov chain: accept/reject with Metropolis-Hastings step

Acceptance probability

$$
A\left(\phi^{(i-1)}, \phi^{\prime}\right)=\min \left(1, \frac{\tilde{p}\left(\phi^{(i-1)}\right)}{p\left(\phi^{(i-1)}\right)} \frac{p\left(\phi^{\prime}\right)}{\tilde{p}\left(\phi^{\prime}\right)}\right) \begin{aligned}
& \text { True dist } \\
& \text { Model dist }
\end{aligned}
$$

proposal independent

of previous sample

Fields via flow models

Summary chart: Tej Kanwar

Application: scalar field theory

First application: scalar lattice field theory

- One real number $\phi(x) \in(-\infty, \infty)$ per lattice site \times (2D lattice)
- Action: kinetic terms and quartic coupling

$$
S(\phi)=\sum_{x}\left(\sum_{y} \frac{1}{2} \phi(x) \square(x, y) \phi(y)+\frac{1}{2} m^{2} \phi(x)^{2}+\lambda \phi(x)^{4}\right)
$$

5 lattice sizes: $L^{2}=\left\{6^{2}, 8^{2}, 10^{2}, 12^{2}, 14^{2}\right\}$ with parameters tuned for analysis of critical slowing down

	E1	E2	E3	E4	E5
L	6	8	10	12	14
m^{2}	-4	-4	-4	-4	-4
λ	6.975	6.008	5.550	5.276	5.113
$m_{p} L$	$3.96(3)$	$3.97(5)$	$4.00(4)$	$3.96(5)$	$4.03(6)$

Application: scalar field theory

First application: scalar lattice field theory
Choose real non-volume preserving flows: [Dinh et al. I605.08803]

- Affine transformation of half of the variables:
- scaling by $\exp (s)$
- translation by t
- s and t arbitrary neural networks depending on untransformed variables only
- Simple inverse and Jacobian

Application: scalar field theory

First application: scalar lattice field theory

- Prior distribution chosen to be uncorrelated Gaussian:

$$
\phi(x) \sim \mathcal{N}(0,1)
$$

Real non-volume-preserving (NVP) couplings * 8-I2 Real NVP coupling layers

* Alternating checkerboard pattern for variable split
* NNs with 2-6 fully connected layers with 100-1024 hidden units
- Train using shifted KL loss with Adam optimizer * Stopping criterion: fixed acceptance rate in MetropolisHastings MCMC

Application: scalar field theory

First application: scalar lattice field theory

Success: Critical slowing down is eliminated
Cost: Up-front training of the model

Conventional approaches slow down

(c) Flow-based MCMC ensembles

No slow-down

From toy models to QCD

Target application: Lattice QCD for nuclear physics

(1. Scale number of dimensions $\rightarrow 4 D$
2. Scale number of degrees of freedom $\rightarrow 48^{3} \times 96$
(3.) Methods for gauge theories
[arXiv:2002.02428, PRL I25, I2 I60I (2020), 2008.05456]

Aurora2I Early Science Project

Incorporating symmetries

Gauge field theories

- Field configurations represented by links $U_{\mu}(x)$ encoded as matrices
- e.g., for Quantum Chromodynamics, $\mathrm{SU}(3)$ matrices (3×3 complex matrices M with $\operatorname{det}[M]=1, M^{-1}=M^{\dagger}$)
- Group-valued fields live not on real line but on compact manifolds

- Action is invariant under group transformations on gauge fields

1. Flows on compact, connected manifolds
2. Incorporate symmetries: gauge-equivariant flows

Flows on spheres and tori

Previously: Real non-volume preserving flows

Need:
Flows on compact, connected manifolds e.g., circles, tori, spheres

Flows on spheres and tori

Test case: Flows on the circle

e.g., U(I) field theory, robot arm positions

Diffeomorphism if:

$$
\begin{aligned}
f(0) & \left.\left.=0, \quad \begin{array}{c}
\text { Ens } \\
f(2 \pi)
\end{array}\right)=2 \pi, \quad \begin{array}{c}
\substack{\text { Enansto } \\
\text { tran mo } \\
\rightarrow \text { inv }} \\
\nabla f(\theta)
\end{array}\right)=0, \\
\left.\nabla f(\theta)\right|_{\theta=0} & =\left.\nabla f(\theta)\right|_{\theta=2 \pi}
\end{aligned}
$$

Expressive transformations through:

- Composition $f=f_{K} \circ \cdots \circ f$
- Convex combination

Flows on spheres and tori

[arXiv:2002.02428]
 Normalizing Flows on Tori and Spheres

Danilo Jimenez Rezende * 1 George Papamakarios * ${ }^{*}$ Sébastien Racanière ${ }^{* 1}$ Michael S. Albergo ${ }^{2}$ Gurtej Kanwar ${ }^{3}$ Phiala E. Shanahan ${ }^{3}$ Kyle Cranmer ${ }^{2}$Mobius transformation

$$
f_{\omega}(\theta)=R_{\omega} \circ h_{\omega}(z) \quad \begin{gathered}
\text { Rotation to fix } \\
f(\theta=0)
\end{gathered}
$$

- Circular splines
- Rational quadratic function of θ on each of K segments
- Several conditions on coefficients to guarantee diffeomorphism
- Non-compact projection
- Project to the real line and back: careful with numerical instabilities at endpoints

$$
f(\theta)=\frac{\alpha_{k 2} \theta^{2}+\alpha_{k 1} \theta+\alpha_{k 0}}{\beta_{k 2} \theta^{2}+\beta_{k 1} \theta+\beta_{k 0}}
$$

$$
f(\theta)=2 \tan ^{-1}\left(\alpha \tan \left(\frac{\theta}{2}-\frac{\pi}{2}\right)+\beta\right)+\pi
$$

Flows on spheres and tori

[arXiv:2002.02428]
 Normalizing Flows on Tori and Spheres

Danilo Jimenez Rezende * 1 George Papamakarios * ${ }^{1}$ Sébastien Racanière ${ }^{* 1}$ Michael S. Albergo ${ }^{2}$ Gurtej Kanwar ${ }^{3}$ Phiala E. Shanahan ${ }^{3}$ Kyle Cranmer ${ }^{2}$

- Extend straightforwardly to cartesian products of circles and intervals (e.g., tori)
- Extend recursively to D-dimensional spheres

Incorporating symmetries

Incorporating symmetries

- Not essential for correctness of ML-generated ensembles
- BUT: Crucially important in training high-dimensional models especially with high-dimensional symmetries

Incorporating symmetries

Incorporating symmetries

- Not essential for correctness of ML-generated ensembles
- BUT: Crucially important in training high-dimensional models especially with high-dimensional symmetries

Flow defined from coupling layers will be invariant under symmetry if

1. The prior distribution is symmetric
2. Each coupling layer is equivariant under the symmetry i.e., all transformations commute through application of the coupling layer

Gauge field theory

First gauge theory application: $\mathrm{U}(\mathrm{I})$ field theory

Generative flow architecture that is gauge-equivariant

Gauge transformation

Separate group transformation of each link matrix $U_{\mu}(x)$

$$
\begin{gathered}
U_{\mu}(x) \rightarrow U_{\mu}^{\prime}(x)=\Omega(x) U_{\mu}(x) \Omega^{\dagger}(x+\hat{\mu}) \\
\quad \text { for all } \Omega(x) \in U(1)
\end{gathered}
$$

Encode same physics

Gauge-equivariant flows

First gauge theory application: $\mathrm{U}(\mathrm{I})$ field theory

Generative flow architecture that is gauge-equivariant

Define invertible, equivariant coupling layer

$$
g: G^{N_{d} V} \rightarrow G^{N_{d} V} \longleftarrow \text { Lattice volume }
$$

Act on a subset of the variables in each layer

Gauge-equivariant flows

First gauge theory application: $\mathrm{U}(\mathrm{I})$ field theory

Generative flow architecture that is gauge-equivariant

Define invertible, equivariant coupling layer $g\left(U^{A}, U^{B}\right)=\left(U^{\prime A}, U^{B}\right)$

Link updates via a kernel $h: G \rightarrow G$
$\begin{gathered}\text { Link updated by } \\ \text { coupling layer }\end{gathered} \longrightarrow U^{\prime i}=h\left(U^{i} S^{i} \mid I^{i}\right) S^{i^{\dagger}}$
Loop that starts and ends at same point
Coupling layer equivariant under the condition

Gauge-invariant quantities constructed from elements of U^{B}.

$$
h\left(X W X^{\dagger}\right)=X h(W) X^{\dagger}, \quad \forall X, W \in G
$$

Gauge-equivariant flows

First gauge theory application: $\mathrm{U}(\mathrm{I})$ field theory

Generative flow architecture that is gauge-equivariant

$$
U^{\prime i}=h\left(U^{i} S^{i} \mid I^{i}\right) S^{i \dagger} \quad \begin{aligned}
& \text { Gauge-invariant } \\
& \text { quantities constructed } \\
& \text { from elements of } U^{B}
\end{aligned}
$$

Loop that starts and ends at same point

Gauge-equivariant flows

First gauge theory application: $\mathrm{U}(1)$ field theory

Generative flow architecture that is gauge-equivariant

$$
U^{\prime i}=h\left(U^{i} S^{i} \mid I^{i}\right) S^{i \dagger} \quad \begin{aligned}
& \text { Gauge-invariant } \\
& \text { quantities constructed } \\
& \text { from elements of } U^{B}
\end{aligned}
$$

Loop that starts and ends at same point

Gauge-equivariant flows

First gauge theory application: $\mathrm{U}(1)$ field theory

Generative flow architecture that is gauge-equivariant

Gauge-equivariant flows

First gauge theory application: $\mathrm{U}(\mathrm{I})$ field theory

Generative flow architecture that is gauge-equivariant

Other recent related work:
Luo, Clark Stokes, 20 I 2.05232 (2020)
Favoni et al, 2012.1290। (202।)
Luo et al, 2101.07243 (202।)

Gauge-equivariant flows

Fermions

QCD action includes Grassman-valued (anticommuting) fermion fields

- Analytic integration leaves $S[\phi]$ expensive to compute
- Conventionally auxiliary "pseudofermion" fields are introduced and marginalised over
- Target density invariant under translations of the fields with anti-periodic boundary conditions on the pseudofermion field
- Design, translationequivariant convolutions, equivariant linear operators
[arXiv:2 106.05934$]$

Autoregressive model based on coupling layers and linear flows
P-field:

Application: U(1) field theory

First gauge theory application: $\mathbf{U}(1)$ field theory
One complex number $U=e^{i \theta}$ per link on a 2D lattice
Action: expressed in terms of plaquettes (products of links around closed loops) with a single coupling

$$
\begin{gathered}
S(U):=-\beta \sum_{x} \operatorname{Re} P(x) \\
P(x):=U_{0}(x) U_{1}(x+\hat{0}) U_{0}^{\dagger}(x+\hat{1}) U_{1}^{\dagger}(x)
\end{gathered}
$$

- Fixed lattice size: $L^{2}=16$ with couplings $\beta=\{1,2,3,4,5,6,7\}$

Continuum limit (critical slow-down) as $\beta \rightarrow \infty$

Application: U(1) field theory

First gauge theory application: $\mathbf{U}(1)$ field theory
\square Prior distribution chosen to be uniform

- Gauge-equivariant coupling layers
* 24 coupling layers
* Kernels h: mixtures of non-compact projections,
6 components, parameterised with convolutional
* Kernels h: mixtures of non-compact projections,
6 components, parameterised with convolutional NNs (i.e., NN output gives params. of NCP)
* NNs with 2 hidden layers with 8×8 convolutional filters, kernel size 3
- Train using shifted KL loss with Adam optimizer

* Stopping criterion: loss plateau

Application: U(1) field theory

First gauge theory application: $\mathbf{U}(1)$ field theory

Success: Critical slowing down is significantly reduced
Cost: Up-front training of the model
Sampling of the topological charge

$$
Q:=\frac{1}{2 \pi} \sum_{x} \arg (P(x))
$$

Conventional approaches
$2 D, L=16, \beta=6$

Application: $\mathrm{U}(1)$ field theory

First gauge theory application: $\mathrm{U}(1)$ field theory

Success: Critical slowing down is significantly reduced
Cost: Up-front training of the model
Cost per independent sample

Application: $\mathrm{U}(1)$ field theory

First gauge theory application: $\mathbf{U}(1)$ field theory

Succe
Cost:

SUCCESS!

Proof-of-principle of efficient, exact, ML algorithm for LQFT
Jupyter notebook tutorial: arXiv:2101.08।76

Significant work required to scale to state-of-the-art

PRL 125, 121601 (2020),
2002.02428 (2020)]

Interdisciplinary relevance

Outlook

ML-accelerated algorithms have huge potential to enable first-principles nuclear physics studies

Flow-based generation of QCD gauge fields at scale would

* Enable fast, embarrassingly parallel sampling
\rightarrow high-statistics calculations
* Allow parameter-space exploration (re-tune trained models)
* Reduce storage challenges (store only model, not samples)

Implementations of flow models at scale (e.g., 4D, 643×128) conceptually straightforward, but work needed

* Training paradigms
* Model parallelism
* Exascale-ready implementations


```
Emergence
of complex
structure in nature
```


The NSF AI Institute for Artificial Intelligence and Fundamental Interactions (IAIFI) "ere-phi"

