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Reinforcement Learning (RL)

• Reinforcement Learning (RL) is a type of machine learning 
technique that enables an agent to learn in an interactive 
environment by trial and error using feedback from its own 
actions and experiences.
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Reinforcement Learning (RL)
• RL: An agent interacts with an 

environment !  over a number of 
discrete time steps. 

• The agent receives state or 
observation !  and then chooses 
an action !  from a set of actions 
!  according to its policy ! . 

• Goal: Maximize the total discounted 

return !

ℰ

st
at

𝒜 π

Rt =
T

∑
t′�=t

γt′ �−trt′ �
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Quantum Computing
• Classical computers: Classical bits 0 vs 1


• Quantum computers: Quantum bits (qubit) �  where �  and �  are 
complex numbers � 


• Quantum entanglements: A unique property of quantum physics —> No analog in the 
classical computer


• Famous algorithms: 


• Shor’s algorithm: Can be used to break the state-of-the-art public key cryptography 
systems such as RSA


• Grover’s algorithm: Quadratic speedup in unstructured search

|Ψ⟩ = α |0⟩ + β |1⟩ α β
ℂ
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• Designing a quantum algorithm is non-trivial task


• Even harder in the noisy quantum machines
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Quantum States
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|1⟩ = [0
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Quantum States
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Density Operators

ρ = ∑
j

pj ψj⟩ ⟨ψj

Examples:

|0⟩ = [1
0] ⟨0 | = [1 0]

|0⟩⟨0 | = [1
0] [1 0] = [1 0

0 0]
ψj⟩
pj

Basis state

Probability



Quantum Operations
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X
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Z

H

[0 1
1 0]

[0 −i
i 0 ]

[1 0
0 −1]
1

2 [1 1
1 −1]

|0⟩ X

[0 1
1 0] [1

0] = [0
1] = |1⟩

Example:



Quantum Operations
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[e−i(ϕ+ω)/2 cos(θ/2) e−i(ϕ−ω)/2 sin(θ/2)
e−i(ϕ−ω)/2 sin(θ/2) ei(ϕ+ω)/2 cos(θ/2) ]R(ϕ, θ, ω)

Bloch sphere



Quantum Operations
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⨁

CNOT
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⨁

|0⟩

|0⟩

⨁

|1⟩

|0⟩

Result

|0⟩

|0⟩

|1⟩

|1⟩
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Quantum Machine Learning
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Hybrid Quantum-Classical Paradigm
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Interfacing with Classical ML
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|0⟩
|0⟩

Ui(θi)

Uj(θj)
|0⟩
|0⟩

Uk(θk)

H
[sin(x), y]

x3 + y2



Quantum Reinforcement Learning
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Variational Quantum Circuits (VQC)
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• Quantum circuits with tunable parameters.


• Subject to iterative optimization procedures.


• �  : encoding circuit


• �  : variational circuit


• �  : measurement

U(x)

V(θ)



Quantum Encoding and State Preparation
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|ψ⟩ = ∑
(q1,q2,⋯,qN)∈{0,1}

cq1,q2,⋯,qN
q1⟩ ⊗ q2⟩ ⊗ ⋯ ⊗ qN⟩

where !  is the complex amplitude for each 
basis state and each !

cq1,⋯,qN
∈ ℂ

qi ∈ {0,1}

∑
(q1,⋯,qN)∈{0,1}

cq1,⋯,qN

2 = 1The total probability is equal to 1:

A general !  qubit quantum state can be represented as:N



Quantum Encoding and State Preparation
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Amplitude	Encoding Variational	Encoding

Encode a vector !  into 
a ! -qubit quantum state:

(α0, ⋯, α2n−1)
n

|Ψ⟩ = α0 |00⋯0⟩ + ⋯ + α2n−1 |11⋯1⟩

where !  are real numbers and  
!  is normalized

αi
(α0, ⋯, α2n−1)
! -dimensional vector will require 
only !  qubits to encode
N

log2(N) Simpler implementation than 
amplitude encoding

Input numbers !  are used as 
quantum rotation angles

x1⋯xn



Quantum Deep Q-Learning

!25IEEE Access 8, 141007-141024



Quantum Deep Q-Learning

• Env: FrozenLake 
• 16 discrete states 
• 4 actions
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Variational Quantum Circuits for Deep Reinforcement Learning

Algorithm 1 Variational Quantum Deep Q Learning
Initialize replay memory D to capacity N
Initialize action-value function circuit Q with random parameters
for episode = 1,M do

Initialise state s1
for t = 1, T do

With probability ✏ select a random action at
otherwise select at = maxa Q⇤(st, a; ✓)
Execute action at in emulator and observe reward rt and next state st+1

Store transition (st, at, rt, st+1) in D

Sample random minibatch of transitions (sj , aj , rj , sj+1) from D

Set yj =
⇢

rj for terminal sj+1

rj + �maxa0 Q(sj+1, a0; ✓) for non-terminal sj+1

Perform a gradient descent step on (yj �Q(sj , aj ; ✓))
2

end for
end for

2.3.1 Computational Basis Encoding

For a general n-qubit state, it can be represented as:

| i =
X

(q1,q2,...,qn)2{0,1}n

cq1,...,qn |q1i ⌦ |q2i ⌦ |q3i ⌦ ...⌦ |qni , (4)

where cq1,...,qn 2 C is the amplitude of each quantum state and each qn 2 {0, 1}.
The square of the amplitude is the probability of measurement with the output |q1i ⌦ |q2i ⌦ |q3i ⌦ ...⌦ |qni and the
total probability should sum to 1.

X

(q1,q2,...,qn)2{0,1}n

||cq1,...,qn ||
2 = 1 (5)

For example, there are 16 possible states in the environment Frozen-Lake . Each possible state is labeled with an integer
in the range from 0 to 15. The encoding procedure is as the following: The decimal number is first converted into a
binary number and then encoded into the quantum states through single qubit unitary rotation. In other words, each
quantum state can be denoted by a four-digit binary number b1b2b3b4, where b1, b2, b3, b4 can only take the value of 0
or 1. Therefore, the encoded quantum state is |b1i ⌦ |b2i ⌦ |b3i ⌦ |b4i. For example, the state observed by the agent,
12, is first converted to the binary number 1100, which will be |1i ⌦ |1i ⌦ |0i ⌦ |0i.

We propose the following single qubit unitary rotation method to encode the classical states from the testing environments
into the quantum circuits Fig1. The rotation angles are:

✓i = ⇡ ⇥ bi
�i = ⇡ ⇥ bi

where i represents the index of each qubit. In this work, the total number of qubits is 4; therefore, the index is the set
{1, 2, 3, 4}.

4

Rotation :

Variational Quantum Circuits for Deep Reinforcement Learning

|0i Rx(✓1) Rz(�1) • R(↵1,�1, �1)

|0i Rx(✓2) Rz(�2) • R(↵2,�2, �2)

|0i Rx(✓3) Rz(�3) • R(↵3,�3, �3)

|0i Rx(✓4) Rz(�4) R(↵4,�4, �4)

Figure 1: Generic circuit architecture for the deep reinforcement learning. This is the generic variational quantum
circuit architecture for deep Q learning. The parameters labeled ✓ and � are for state preparation and are not subject to
iterative optimization. The CNOT gates are used to entangle quantum states from each qubit. Parameters labeled ↵, �
and � are the ones for iterative optimization. Note that the grouped box may repeat several times to increase the number
of parameters. The number of qubits can be adjusted to fit the problem of interest and the capacity of the simulators
of quantum machines. In this work, the grouped circuit repeats two times and therefore the total number of circuit
parameters subject to optimization is 4 ⇥ 3 ⇥ 2 = 24. It is often to add a bias after the quantum measurement, the
length of the bias vector is the same as the number of qubits. The bias vector is also subject to optimization. Therefore,
the total number of parameters in this example is 24 + 4 = 28
.

2.4 Quantum Circuit for Radio Network

In the experiments on the cognitive radio, the total number of channels that can be selected by the agent at each time-step
is known in advance. Since the channel changes from time to time, it is necessary to include not only the channel but
also the temporal information into the observation. The observation is in the following form: (channel, time). Let the
number of channel is N , there are N time-steps in a full channel-changing cycle. The number of possible states is thus
N2. In addition, at each time-step, the agent can select one of the channel from the set of all possible channels, which is
of number N . Given this scenario, classical Q-learning, which is tabular based, will have N3 entries in the table. In the
neural network based deep Q-learning, the number of parameters will be 2⇥N2 + 2⇥N [30]. However, with our
proposed variational quantum circuits, the number of circuit parameters is N ⇥ (3⇥ 2 + 1) , see Table3 and Figure6.

|0i Rx(✓1) Rz(�1) • R(↵1,�1, �1)

|0i Rx(✓2) Rz(�2) R(↵2,�2, �2)

(a) Two Channels

|0i Rx(✓1) Rz(�1) • R(↵1,�1, �1)

|0i Rx(✓2) Rz(�2) • R(↵2,�2, �2)

|0i Rx(✓3) Rz(�3) R(↵3,�3, �3)

(b) Three Channels

|0i Rx(✓1) Rz(�1) • R(↵1,�1, �1)

|0i Rx(✓2) Rz(�2) • R(↵2,�2, �2)

|0i Rx(✓3) Rz(�3) • R(↵3,�3, �3)

|0i Rx(✓4) Rz(�4) R(↵4,�4, �4)

(c) Four Channels

|0i Rx(✓1) Rz(�1) • R(↵1,�1, �1)

|0i Rx(✓2) Rz(�2) • R(↵2,�2, �2)

|0i Rx(✓3) Rz(�3) • R(↵3,�3, �3)

|0i Rx(✓4) Rz(�4) • R(↵4,�4, �4)

|0i Rx(✓5) Rz(�5) R(↵5,�5, �5)

(d) Five Channels

Figure 2: For circuit configurations for cognitive radio experiment.

3 Experiment and Results

3.1 Environment Setup

We set up the experiment following the circuit architecture in Fig1. The quantum circuit as shown in the figure is
numerically simulated with the software package PennyLane [31]. We use the standard package PyTorch [32] to help the

5

Environment with 16 states. 

States numbered as 0~15 

Example:  State 12 : 1100 ->1,1,0,0 

Variational Quantum Circuits for Deep Reinforcement Learning

Algorithm 1 Variational Quantum Deep Q Learning
Initialize replay memory D to capacity N
Initialize action-value function circuit Q with random parameters
for episode = 1,M do

Initialise state s1
for t = 1, T do

With probability ✏ select a random action at
otherwise select at = maxa Q⇤(st, a; ✓)
Execute action at in emulator and observe reward rt and next state st+1

Store transition (st, at, rt, st+1) in D

Sample random minibatch of transitions (sj , aj , rj , sj+1) from D

Set yj =
⇢

rj for terminal sj+1

rj + �maxa0 Q(sj+1, a0; ✓) for non-terminal sj+1

Perform a gradient descent step on (yj �Q(sj , aj ; ✓))
2

end for
end for

2.3.1 Computational Basis Encoding

For a general n-qubit state, it can be represented as:

| i =
X

(q1,q2,...,qn)2{0,1}n

cq1,...,qn |q1i ⌦ |q2i ⌦ |q3i ⌦ ...⌦ |qni , (4)

where cq1,...,qn 2 C is the amplitude of each quantum state and each qn 2 {0, 1}.
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2 = 1 (5)

For example, there are 16 possible states in the environment Frozen-Lake . Each possible state is labeled with an integer
in the range from 0 to 15. The encoding procedure is as the following: The decimal number is first converted into a
binary number and then encoded into the quantum states through single qubit unitary rotation. In other words, each
quantum state can be denoted by a four-digit binary number b1b2b3b4, where b1, b2, b3, b4 can only take the value of 0
or 1. Therefore, the encoded quantum state is |b1i ⌦ |b2i ⌦ |b3i ⌦ |b4i. For example, the state observed by the agent,
12, is first converted to the binary number 1100, which will be |1i ⌦ |1i ⌦ |0i ⌦ |0i.

We propose the following single qubit unitary rotation method to encode the classical states from the testing environments
into the quantum circuits Fig1. The rotation angles are:

✓i = ⇡ ⇥ bi
�i = ⇡ ⇥ bi

where i represents the index of each qubit. In this work, the total number of qubits is 4; therefore, the index is the set
{1, 2, 3, 4}.
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• Env: CognitiveRadio
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Quantum RL Agent

Designed Variational Quantum Circuits
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Evolutionary Quantum RL

• Why? 
• Gradient-based methods may suffer from local optima. 
• Certain QRL models are difficult to train via gradient-based 

methods. 
• In classical RL, evolutionary optimization can beat gradient-

based methods in some hard tasks. 

!35
Chen, S. Y. C., Huang, C. M., Hsing, C. W., Goan, H. S., & Kao, Y. J. (2022). Variational quantum reinforcement learning via 
evolutionary optimization. Machine Learning: Science and Technology, 3(1), 015025.



Evolutionary Optimization
• Initialization: 

Initialize the population !  of !  agents with each of them given randomly generated initial parameters ! , 
which are sampled from !  

• Running and evaluating the agents: 

• Each agent plays the game !  times and get the average score !  

• Top !  agents age selected to be the parents to generate the next generation 
• Mutation and the next generation: 

• !  children: Each child is generated via a randomly selected agent from the parent group and 
slightly mutated according to !  where !  is the mutation power and !  is the Gaussian 
noise 

• The elite or ! - child is the best performing from the parent group

𝒫 N θ
𝒩(0,I )

R1 Savg
i =

1
R1

R1

∑
r=1

Si,r

T

N − 1
θ ← θ + σϵ σ ϵ

Nth

!36



Environments-CartPole 

• Observation: A four dimensional vector !  
comprising values of the cart position, 
cart velocity, pole angle and pole 
velocity at the top. 

• Action: There are two actions: pushing to 
the right or left. 

• Reward: A reward +1 is given for every 
time step where the pole close to being 
upright.

st
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!38Chen, S. Y. C., Huang, C. M., Hsing, C. W., Goan, H. S., & Kao, Y. J. (2022). Variational quantum reinforcement 
learning via evolutionary optimization. Machine Learning: Science and Technology, 3(1), 015025.



Environments-MiniGrid
• Observation: A 147 dimensional vector !  
• Action: There are 6 actions: 

• Turn left 
• Turn right 
• Move forward 
• Pick up an object 
• Drop the object 
• Toggle 

• Reward: A reward of 1 is given when the 
agent reaches the goal. A penalty is 
subtracted from the reward according to:  
1 − 0.9 × (number of steps/max steps 

allowed)

st

!39Chen, S. Y. C., Huang, C. M., Hsing, C. W., Goan, H. S., & Kao, Y. J. (2022). Variational quantum reinforcement 
learning via evolutionary optimization. Machine Learning: Science and Technology, 3(1), 015025.



Hybrid TN-VQC model

!40Chen, S. Y. C., Huang, C. M., Hsing, C. W., Goan, H. S., & Kao, Y. J. (2022). Variational quantum reinforcement 
learning via evolutionary optimization. Machine Learning: Science and Technology, 3(1), 015025.
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RL for Quantum Architecture Search 
(QAS)
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Quantum Computer

RL Agent

H

H
X

?
Action:  

Place a quantum 
gate on a wire.

Reward:  
(a) -0.01 for each step. 
(b) +0.99 when reaching 

fidelity > 0.99.

Observation:  
Pauli-X,Y,Z expectation 

values. 

Kuo, E. J., Fang, Y. L. L., & Chen, S. Y. C. (2021). Quantum Architecture Search via Deep Reinforcement Learning. arXiv preprint arXiv:2104.07715.



RL for QAS

• Goal:  
• Find the specific quantum circuit for a desired quantum states  
• Use as few gates as possible 

• Algorithms:  
• Deep Q-learning 
• Policy Gradients

!45



Policy Gradient
• Q-learning or deep Q-learning: value-based RL-> learns the value function and use it 

as the reference to generate the decision on each time-step.


• Policy gradient -> the policy function �  is parameterized with the parameters � 


• REINFORCE algorithm: parameters �  are updated along the direction
� 


• To reduce the variance, baseline function is introduced 
�

π(a ∣ s; θ) θ

θ
∇θ log π (at ∣ st; θ) Rt

∇θ log π (at ∣ st; θ) (Rt − bt (st))
!46

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3), 229-256.



Advantage Actor-Critic (A2C)

• Advantage function �  is defined to be � 


• How good or bad the action �  compared to the average value at this state �

A (st, at) Rt − bt = Q (st, at) − V (st)
at V(st)

!47



Proximal Policy Optimization (PPO)
• Provide more stable policy gradient training through limiting the policy update step size at each 

training step.


• � 


• � 


• �

qt(θ) =
π (at ∣ st; θ)

π (at ∣ st; θold )

Lpolicy (θ) = 𝔼t [qt(θ)At] = 𝔼t [
π (at ∣ st; θ)

π (at ∣ st; θold )
At]

Lpolicy (θ) = 𝔼t [− min (qt At, clip (qt,1 − C,1 + C) At)]
!48

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.



2-qubit Bell state
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• For � , there are 12 actions.n = 2

∣  Bell ⟩ =
|0⟩⊗2 + |1⟩⊗2

2
=

|00⟩ + |11⟩

2

𝔾 =
n

⋃
i=1

{Ui(π/4), Xi, Yi, Zi, Hi, CNOTi,(i+1)(mod2)}
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Kuo, E. J., Fang, Y. L. L., & Chen, S. Y. C. (2021). Quantum Architecture Search via Deep Reinforcement Learning. arXiv preprint arXiv:2104.07715.



3-qubit GHZ state

!51

|GHZ⟩ =
|0⟩⊗3 + |1⟩⊗3

2
=

|000⟩ + |111⟩

2

𝔾 =
n

⋃
i=1

{Ui(π/4), Xi, Yi, Zi, Hi, CNOTi,(i+1)(mod2)}

• For � , there are 21 actions.n = 3
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Kuo, E. J., Fang, Y. L. L., & Chen, S. Y. C. (2021). Quantum Architecture Search via Deep Reinforcement Learning. arXiv preprint arXiv:2104.07715.



Continual RL
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• Noise pattern in the quantum device may change


• RL policies trained previously may not perform well with new 
environments.


• Training a new policy from scratch is computationally 
expensive and time-consuming.



Continual RL for QAS

!54

Ye, E., & Chen, S. Y. C. (2021). Quantum Architecture Search via Continual Reinforcement Learning. arXiv preprint arXiv:2112.05779.



Probabilistic Policy Reuse
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Policy Library

Experiment 1 Experiment 2 Experiment 3

Model on Env 1 Model on Env 1 Model on Env 1

Model on Env 2 Model on Env 2

Model on Env 3

Env 2 Env 3 Env 4

Model on Env 2 Model on Env 3 Model on Env 4

Ye, E., & Chen, S. Y. C. (2021). Quantum Architecture Search via Continual Reinforcement Learning. arXiv preprint arXiv:2112.05779.



Probabilistic Policy Reuse

!56Fernández, F., & Veloso, M. (2006, May). Probabilistic policy reuse in a 
reinforcement learning agent. In Proceedings of the fifth international joint 
conference on Autonomous agents and multiagent systems (pp. 720-727).
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Probabilistic Policy Reuse

!58Fernández, F., & Veloso, M. (2006, May). Probabilistic policy reuse in a 
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Probabilistic Policy Reuse with DQN
• Extend the Probabilistic Policy Reuse with deep neural networks


• Experience Replay and Target Networks
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Results: Noise on X gate
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Results: Noise on X, H gates
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Results: Noise on X, CNOT gates
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• Quantum encoding / embedding methods are critical. 
• Trainable quantum-inspired classical architectures help data 

compression. 
• With careful design, quantum reinforcement learning can learn a similar 

task with fewer model parameter. 
• Gradient-based and gradient-free algorithms for quantum RL 
• Reinforcement learning can help finding quantum circuit architecture 

under various patterns. 
• Previously-learned policies can be used to help the training of RL agent 

for unseen environments.
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