Wire-Cell Toolkit Architecture
The Basics

Brett Viren

August 31, 2021

Wire-Cell Basic Topics

Getting started
Interface classes
Components

Data flow graph

Applications

Packaging

@ Plugins

o Logging

o Util

o Configuration

@ Documentation and community

Introduction

The Wire-Cell Toolkit (WCT) provides

@ A general purpose component architecture including an execution framework.
Implementations solving various LAr TPC problems.
Configuration system with examples for most major LAr TPC detectors.
Support data files (detector description, response function, noise spectra).
A command line application.
Modular Python support package and command line interfaces.

Extensible build system for the toolkit and user packages.

Documentation, and community (GitHub, blog, Mattermost, mailing list)

Architectural layers of entry to the Wire-Cell Toolkit

interfaces the toolkit API, well-factored abstract base class hierarchy.
components a unit of functionality, implements a number of interfaces.

aggregation combine concrete components or via their interfaces to produce arbitrary
execution patterns.

named factory dynamically produce an interface given the type and instance names of its
concrete component from runtime plugins.

data flow aggregate INode interfaces into a data flow graph to be executed by one of
the provided engines, also implemented as a component.

configuration the IConfigurable interface can be fed by the application or by
WCT’s simple and flexible configuration language.

apps high-level behavior bundled into WCT “app” components.
main top-level (application as a tool) behavior with Main class.
embed other applications may call into any of these layers.

user interface toolkit provides the wire-cell command line interface.

Interface classes

An abstract base class defines one or more pure-virtual methods and
describes the expected behavior of the implementation.

class IMethod {
public:
// Do something, return result or -1 on error
virtual int method(double val) = 0;
¥

WCT Interface Library

All “official” WCT interfaces are in a single WCT sub-package:
source wire-cell-toolkit/iface/
header #include "WireCellIface/IMyInterface.h"
library 1ibWireCellIface.so

WCT Interface Class Hierarchy (roots)

Wire-Cell Toolkit Interface Bases\

© 1pata

using pointer = std::shared_ptr<TYPE>;
using vector = std::vector<pointer>;

(©) 1component

using vector = s

using pointer = std::shared_ptr<TYPE>;
vector<pointer>;

/

|© IComponent
|
[

(©) 1component

(©)0epo
I
[

©|Node|
=

i

(© 1anodepiane

virtual int ident() const = 0;

Brett Viren

Two branches in the interface class hierarchy:

@ nouns: all data interfaces are from
IData<TYPE>

@ verbs: all component interfaces are from
IComponent<TYPE>

The CRTP is used to provide some standard types:
pointer ashared_ptr to the interface
vector avectorof pointer
All interfaces are held by shared_ptr<>.

August 31, 2021 7/47

https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

Some WCT IData interfaces

IDepo a localized distribution of ionization electrons.
IWire represent information about one wire segment
IChannel an electronics channel to which wires feed
IFrame dense or spare representation of waveforms.
ISlice aslice in time of a frame.
IBLoODb a voxel in space with associated value (eg, charge)
ICluster aset of associations between blobs
ITensor ageneral, dense array of some shape

Some collections of IData, themselves IData are also defined.

Components - WCT’s verbs

e A component interface defines methods that “do” something.

@ A concrete component (or briefly, just “component”) is an
implementation of one or more component interfaces.

WCT component categories

nodes an INode provides a function-like object that may serve as a

vertex in a WCT data flow graph.

@ Similar to Gaudi Algorithm or art Module though the different node types
span a variety of interfaces.

services an API to some information or process.
@ Similar to service or tools from Gaudi or art though less constrained.

features provide some kind of feature to the component
@ eg: naming, configuring, finalizing.
A component is usually a node or a service and not both typically provide
one ore more feature component interfaces.

Concrete component inherits from interfaces

class MyFilter : public virtual IFrameFilter,
public virtual IConfigurable {
public:
// IFrameFilter
virtual bool operator() (const input_pointer& inframe,
output_pointer& outframe);

// IConfigurable

virtual void configure(const WireCell::Configuration& config);
virtual WireCell::Configuration default configuration() const;

} .
// Sketch of the interface class hierarchy

class IFunctionNodeBase : public INode { ... }

template <typename InputType, typename OutputType>

class IFunctionNode : public IFunctionNodeBase { ... }

class IFrameFilter : public virtual IFunctionNode<IFrame,IFrame> { ... }

class IConfigurable : wvirtual public IComponent<IConfigurable> { ... })

Component factory registration

Insrc/MyFilter.cxx

#include "WireCellUtil/NamedFactory.h"
WIRECELL_FACTORY (MyFilter, WireCell::MyNS::MyFilter,
WireCell: : IFrameFilter,
WireCell: :IConfigurable)

Factory uses a “type name” (MyFilter here) which is technically distinct from but typically chosen to
be identical to the component’s C++ class name.)

Method implementation

The node execution operator

bool MyFilter: :operator() (const input_pointer& in,
output_pointer& out)

{
out = nullptr;
if (!in) { return true; } // more on EOS later
out = apply_filter(in);
return true;
}

// configuration related methods described later.

Returning false is for source nodes to signal they are exhausted. J

Use Named Factory to produce interface instances

Produce instances of interfaces

// One component instance, two interface instances

auto si = Factory::lookup<ISomelInterface>("MyType'", "a-name");
auto oi = Factory::find<IOtherInterface>("MyType", "a-name');
si->some_method() ;

oi->other_method();

// Additional instances of different "type" or "instance" names.
auto si2 = Factory::find<ISomeInterface>("MyType", "another-name");
auto si3 = Factory::find<ISomelInterface>("YourType", "a-name");

4

The production of an instance of an interface is parameterized by:
@ C++ interface type,
@ The component “type name” and

@ An optional component “instance name”.

INode+IConfigurable components will typically retrieve and hold service type components from
in their configure () method. IAnodePlane is a common one to need.

J

WCT dataflow graph

WCT can execute INode components aggregated into a dataflow
programming (DFP) graph.

@ A node may consume or produce data through its ports.

@ A port shall pass data of a given type.

@ An edge transfers data of fixed type from one output port to one input port.

@ Anode is in one category based on its pattern of ports and behavior.

> some categories: source, sink, function, fanin, fanout

Dataflow “programming” means to construct a graph.

> WCT provides dynamic graph construction driven by configuration.
> Port type and occupancy rules are asserted during construction.

A valid DFP graph may then be executed by an engine.
> WCT supplies two engines.

https://en.wikipedia.org/wiki/Dataflow_programming
https://en.wikipedia.org/wiki/Dataflow_programming

Simple DFP graph

FrameFileSource IFrame DumpFrames
0 0 [0]

Graph engine executes source node FrameFileSource:0.

Source produces IFrame on its output port 0 and exits.

o Engine transfers IFrame on edge and executes the succeeding node.
o DumpFrames: 0 inputs IFrame on port 0, does some logging, exits.
°

Engine continues until sources are exhausted and edges are drained.

WCT DFP Stream Protocol

A stream is the sequence of data seen on an edge between two node ports
The stream is terminated by a special end-of-stream (EOS) marker.

stream: ([data(0)], ., [data(i)], ., [data(n-1)], [EOS])

@ Analogous to a C-string of characters terminated with >\ 0.

» Each “character”isa std: :shared_ptr<TYPE>

» [data(i)] holds a non-NULL pointer, [EOS] holds nullptr.
@ A node should flush out any cached data when an EOS is input.
@ A node with EOS input shall output a corresponding EOS.

@ A new stream may follow an EOS.

When a source is fully exhausted of streams, it’s next execution after the final EOS shall

return false. The engine should then not execute the source node again and the graph
will begin to drain. Graph execution then terminates.

August 31, 2021 17/47

Larger example: sim, sigproc, 3D imaging, file 1/0

HES

@ IDepoSet data is read from file, drifted and 6-way fanned out.

Per-APA pipelines implement simulation, signal processing and 3D imaging.

@ Intermediate 2-way fanout forwards IFrame down pipeline and to
FrameFileSink, one each for “orig” and “gauss” frames.

Each pipeline is capped to save the final ICluster.

TR A THI =TT -

18/47

WCT has two graph execution engines

Pgrapher

@ Single threaded, executes only one node at any time.
@ Available in core WCT with no extra dependencies.
°

Executes graph in reverse topological order, minimizes memory usage.

Some graphs suffer a speed pathology for O(10°) IData or more.
TbbFlow

Multi-threaded, execute nodes in parallel.

Requires WCT built with TBB.

Parallelism limited by a given max number of threads.

Efficient even with 1 us node execution times.
@ Allows multiple data “in flight” at once, higher total memory usage.

Both are identical in terms of their configuration and use.

WCT applications vs WCT apps

Confusingly, there are two similar terms meaning totally different things:

|”

“application” WCT can be embedded in some “external” application.

@ WCT provides the wire-cell command line program as a simple example
of embedding Main into a “Wire-Cell Toolkit application”.

@ The larwirecell package (part of LArSoft) provides an art “tool” called
WCLS_tool that calls WireCell: :Main and an art “module” that can
operate the “tool”. The package also provides WCT components that know
how to handle LArSoft data.

“app” WCT “internally” defines an “app” (confusingly as an TApplication
interface) to represent any kind of high-level execution.

@ the Main class can execute zero or more “apps”.
@ Pgrapher and TbbF1low have been introduced.
@ Others include the little used ConfigDumper and NodeDumper.

Package dependency hierarchy

WireCellSigProc ‘WireCellSio

Non-WCT external dependencies
WireCellUtil low-level utility code used by all WCT.
WireCellIface all “official” interfaces.
WireCellAux mid-level utility based on interfaces.
WireCell™ (all the rest) Wire-Cell Toolkit plugin libraries.
Graph is made based on local build config (eg, WireCellRoot not shown).

Gray lines are dependency through the unit tests (not libraries).

Tour of select WCT sub-packages

¢ WireCellGen TPC noise and signal simulation.

c WireCellSigProc TPC noise filtering and signal processing.

¢ WireCelllmg TPC 3D imaging.

¢ WireCellPgraph single-thread data flow graph execution.
WireCellTbb multi-thread data flow graph execution.

¢ WireCellSio “simple” 1/0, Numpy, tar, JSON.
WireCellHio HDF5 based 1/0.
WireCellPytorch DNNROI TPC signal processing.
WireCellZio experimental ZeroMQ_services.

WireCellRoot ROOT I/0 and ROOT-based unit tests.

@ Roughly categorized by “topic” and/or by a major, optional dependency.

@ Those marked “c” are considered in the “core WCT”, not requiring optional
dependencies.

Wire-Cell Toolkit packages

Name:

@ wire-cell-toolkit/<name>/ for an “official” WCT package

@ any-thing-you-want/ for any WCT “user” package in separate repo
Layout under /<name> /:

@ src/*.cxx holds library source and private header files.

@ inc/ holds public library headers under WireCell<Name>/* .h

@ test/test_*.cxX unit test programs.
> Also: test*.sh, test”.py, test*. jsonnet.

apps/<programs>.cxx source for program providing main() (rare).

wscript_build brief package build info. Example:

$ cat gen/wscript_build
bld.smplpkg('WireCellGen', use='WireCellAux')

Wire-Cell Toolkit “user” packages (WCUP)

A WCUP is simply a WCT-like sub-directory in its own repo.

@ Possible to add towire-cell-toolkit proper at some later time.

@ No WCT library shall depend on a WCUP library
@ A WCUP library shall only depend on WCT via WireCellAux and
WireCellIface libraries.

Examples of WCUPs:
@ https://github.com/brettviren/pcbro
@ https://github.com/wirecell/wire-cell-gen-kokkos

The moo program has a WCUP skeleton generator.
@ https://brettviren.github.io/moo/wcup.html

https://github.com/brettviren/pcbro
https://github.com/wirecell/wire-cell-gen-kokkos
https://brettviren.github.io/moo/wcup.html

WCT plugins

A WCT plugin is any shared library containing WCT components.

For automated loading, WCT must be told about all plugin libraries by
name either via configuration or the command line:

$ wire-cell -p MyPlugin [...]

Plugin names: MyPlugin is provided by 1ibMyPlugin. so.

Logging in WCT components

// MyComponent.h

#include "WireCellAux/Logger.h"

class MyComponent : public WireCell: :Aux::Logger, ... {
V2
size_t m_count{0};
double m_var{0};

}

// MyComponent. cxx
MyComponent : : MyComponent ()
WireCell: :Aux: :Logger ("MyComponent", "pkg") { ... }

void MyComponent: :some_method() {
VI
log->debug("call={} var={}", m_count, m_var);
¥
We give the type name used by named factory and a logging group name (usually the

short package name: “gen”, “sigproc”, “img”, etc).

Tracing

Very verbose logging can use CPU even if its log is not emitted.
Embed very noisy log generation in a CPP macro that can be disabled at
compile-time.

// from img/src/BlobClustering.cxx

SPDLOG_LOGGER_TRACE (log, "got {} blobs, holding graph with {}",
blobset->blobs().size(),
boost: :num_vertices(m_grind.graph()));

Of course, do not put side-effects inside this macro!

Log level guidelines

WCT uses spd1log which has “sinks” with ranked “levels”.
In order of desired decreasing verbosity:

trace more than one call per “event” for any given component.
debug O(1) call per “event” from any given component.

info O(1) call from entire job run, communicate some end-result to
the user (likely rare to actually use).

warn a rare, non-fatal problem related to some specific input.
error emit just prior to handling some rare but expected error.

critical emit just prior to throwing exception or returning due to an
error that was not handled locally.

@ If a component works at smaller scale than “event”, be mindful not to over-emit debug
and prefer trace.

@ Consider using a dedicated logging group for such overly noisy components.

Control over logging

CLI via the Main class controls log sinks and their levels
@ By default, all logging is off. User must do something to see logs!

Define a sink to standard out and a lowest level of “debug”:
$ wire-cell -1 stdout -L debug [...]
Define a file sink with special level “trace”

$ wire-cell \

-1 noisy.log:trace -1 error.log:error \
-L trace [...]

WireCellUtil - the base package

Low level utility code that plugins will directly compile against
o Base Interface and IComponent and NamedFactory.
@ Arrays, waveforms, FFT, binning, bounding box.

o Graphs, sets, 3D vectors, coordinate transforms, system of units.

Ray grid, tiling, solving support for 3D img.

Exceptions, persistency, configuration, base objects.

WCT System of Units in C++

In WCT every numeric literal must be given a unit.

#include "WireCellUtil/Units.h"
const double drift_speed = 1.6 * (units::mm/units::ms);

log->("Drift speed is {} parsecs per picoseconds",
drift_speed / (units::parsec/units::picosecond)) ;

@ Always multiple a unit to a literal to bring the value, or a value just read in from some
external source, into the system of units.
@ Always divide by a unit to express in explicit units.
“Never” use values in any other system of units but if you must, mark the variable with the unit:

const double tick = 0.5"units::us;
const double tick ns = tick / units::ns;
log->debug("the tick is {}ns", tick_ns);

WCT configuration subsystem

@ Configuration is given in form of a JSON-like (JsonCPP) object'.

e ConfigManager can parse configuration files and feed results to
IConfigurable instances.
» Normally users need not worry about this, Main handles it.

o WCT directly supports reading files in Jsonnet or JSON format.

There are plans to transition to nlohmann: : json.

Component configuration

using namespace WireCell;

// Tell toolkit our default configuration.

Configuration MyFilter::default_configuration() const {
Configuration cfg;
cfg["threshold"] = m_threshold;
return cfg;

}

// Recieve actual configuration from toolkit.

void MyFilter::configure(const Configuration& cfg) {
m_threshold = get(cfg, "threshold", m_threshold);

}

Note: this is expected to change soon to provide schema control and type safety and reduce

boilerplate code.

The configuration sequence

WCT is configured with an dependency-ordered array of config objects:

config sequence: [[cfgobj], ., [cfgobj]]

Each config object has a standard trio of top-level keys:

{
type: "MyFilter",
name: "a-name",
data: {
threshold: 1.0,
offset: 100*wc.us, // more on units in config later
}
¥

type the “type name” registered with named factory.
name an optional “instance name” for named factory lookup.

data the configuration expected by the component type.

August 31, 2021 34/47

Constructing configuration with Jsonnet

This can be a talk all by itself

@ Read Jsonnet’s very fine tutorial, stdlib and reference documentation.
WCT-specific provides Jsonnet support files:

o wirecell. jsonnet for units, low-level utility functions.

o pgraph. jsonnet help constructing DFP graph configurations.

e vector. jsonnet vector arithmetic.

e pgrapher/experiment/* detector-specific configuration.

https://jsonnet.org/learning/tutorial.html
https://jsonnet.org/ref/stdlib.html
https://jsonnet.org/ref/language.html

Feeding configuration

Set WIRECELL_PATH to include wire-cell-toolkit/cfg/ or set
include on command line as:

$ wire-cell [...] \

-P /path/to/wire-cell-toolkit/cfg \
-c my-main-config.jsonnet

An application may use Main for easy feeding of config to WCT
@ In art/ LArSoft, the WCLS_tool provides a FHiCL — WCT config path.

WCT System of Units in configuration

Same rules apply as with C++: always give units to numeric literals.

local wc = import "wirecell. jsonnet";
local mycfg = {

drift_speed: 1.6 * (wc.mm/wc.us);

}s

Configuration “bulk” data files

Large, generated config required by some WCT components.
o They are typically generated by dedicated, external programs.
» Some of which may be found inwire-cell-python.

o Generation takes too much time to run “live” in a WCT job.
These files are provided in the wire-cell-data package:

@ Description of wire geometry for popular detectors and

o Their pre-calcualted field responses.

@ Models of noise spectra for the simulation.

Also include directory in WIRECELL_PATH or withwire-cell -P [....].

Documentation and community

Main doc page

@ https://wirecell.github.io/
Manual

@ https://wirecell.github.io/manual.html
Tutorial

@ https://czczc.github.io/wire-cell-tutorial/
News “blog”™:

@ https://wirecell.github.io/news/
Doxygen reference

@ https://wirecell.github.io/doxy/html/
Mattermost (chat)

@ https://chat.sdcc.bnl.gov/edg/channels/wire-cell

https://wirecell.github.io/
https://wirecell.github.io/manual.html
https://czczc.github.io/wire-cell-tutorial/
https://wirecell.github.io/news/
https://wirecell.github.io/doxy/html/
https://chat.sdcc.bnl.gov/edg/channels/wire-cell

FL

backups

Brett Viren

Getting source

Released archives:
https://github.com/WireCell/wire-cell-toolkit/releases

Or users may use git:

$ git clone https://github.com/WireCell/wire-cell-toolkit.git

Developers should use:

$ git clone gitegithub.com:WireCell/wire-cell-toolkit.git

https://github.com/WireCell/wire-cell-toolkit/releases

Dependencies

Required

@ Boost Optional

o TBB @ TBB (recommended)

o Eigen3 e HDF5 and H5CPP

e FFTW e ROOT

@ Jsonnet e CUDA, Kokkos, Torch

@ JsonCPP @ ZeroMQ and related

o spdlog
Providing dependencies is the job of the user. Not described here, but various Docker/Singularity
images, Fermilab/UPS products,.Spack recipes, etc are available. Most of the dependencies are provided J
by a reasonable OS such as Debian.

Installation

Build and install

$ cd wire-cell-toolkit/

$./wcb --help

$./wcb configure --prefix=/path/to/install [...]
$./wecb install --notests

*

Various --with-* options can be given to help wcb find dependencies. }

Now add /path/to/install/{bin, 1ib} directories to your various PATH vars.)

e

Test the build

Command line interfaces

$ wire-cell --help

$ wire-cell --version
$ wcsonnet --help

Unit tests
$./wcb --alltests

Why interfaces?

High-level composition while hiding low-level detail.
> “I don’t care what your class does as long as it follows the interface”
o Low-level implementation ignoring high-level structure.
> “I don’t care how you use my class, | will focus on satisfying the interface”

e Dynamic and in particular, configuration-driven composition.

> “We must mix and match the same code in different ways and do not want to write more
C++ each time we want something new.”

Plugin architecture support.
> “Simply name my library to use my components, no need to recompile””

Data as an interface

@ Somewhat unique (aka “controversial”) compared to other systems.
@ Separate usage from data origin and physical representation.

» Most algorithms should not care about file formats.

» Transient/persistent fully decoupled.

» “Smart” data? or simple “bags of values”.
@ No specific need for an “event store” (eg as in Gaudi or art).

» IData interfaces may be implemented with an “event store” backend.

2WCT exploited this by providing a lazy-loading TFrame data type. This “saved the
day” by fighting otherwise ruinous memory usage due to ROOT overhead and the
ProtoDUNE-SP art / LArSoft “raw digit” data model that is input to WCT signal processing.

