
Neutral Hadrons in the Barrel

Henry Klest Calo WG 9/13/21

Framing the Discussion

- My physics interests (and much of the YR) live at high Q², high y
 - This is where pQCD predictions are typically most precise
 - Precise predictions require equally (or more) precise experiments to test them
 - EIC will have unprecedented statistics here, more than HERA in a large region!
- This phase space depends crucially on hadronic reconstruction in the barrel
 - For jets, CC, and inclusive physics
 - Bad hadronic reconstruction in the barrel is very problematic for CC DIS
 - Even larger phase space region goes to the barrel in e+A due to reduced hadron energy

I'm happy to discuss the physics case more, if necessary

Magnet Design

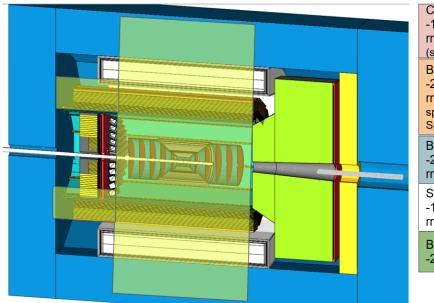
- Materials collected from magnet material excel sheet
 - Looks like solenoid.xml pulls from this sheet
 - Material interaction lengths from PDG
- Historically, no collider experiment has ever put a "proper" HCal beyond such a thick magnet
 - Muon detectors or tail catchers only
 - H1: (HCal inside magnet) set a requirement on their magnet thickness of \leq .6 λ_0 to allow them to catch tails/muons with good efficiency
 - BaBar: Set magnet thickness requirement of \leq .25-.4 λ_0 to ID neutrals
 - ALEPH: Required \leq .4 λ_0
- Based on thickness, expect ~2% of highenergy hadrons to make it past Ecal+Magnet without showering (at mid-rapidity)

	Radial distance(mm	Int. Lengths
SS	325	1.909742625
Cu	155	1.011749347
NbTi	27	0.1125
Total		3.033991973
	Int. L at Thickest	
	4.0269348	

Quite surprised to see this, majority of material in current model is non-magnetic stainless steel S235 ($\lambda_0 \sim 17$ cm)

Copper from coil itself is 1 λ_0

	Radial distance	Int. Lengths		
SS	125	0.734516394		
Cu	155	1.011749347		
NbTi	27	0.1125		
Al	200	0.503778338		
Total		2.362544079		
	Int. L at Thickest			
	3.135740323			


Thinner option, Al overbind (not in sim)

Acadia-v1.0 (N0.0-B0.0-P0.0)

What's there now?

- Barrel ECal is so-called "hybrid"
 - AstroPix silicon layers with Pb/scintillating fibers running inbetween
 - Outside the last silicon layer,
 Pb/SciFi with fibers running parallel to the beam a la KLOE
- Barrel HCal is 10cm x 10 cm scintillator between steel
- Magnet is as described earlier

Central tracking

-137cm to 155cm (∆: 155 cm) rmin: beampipe, rmax: 95cm

(same radial parameters for backward region)

Barrel PID (DIRC, 16 sectors):

-275cm to -155cm (Δ: 430cm) rmin: 95cm, rmax 103cm (Δr: 8cm) space for expansion volume behind BECAL

Space for 10cm service gap in front of HCAL

Barrel ECAL (including support)
-245cm to -159cm (Δ: 404cm)
rmin: 112cm, rmax: 159cm (Δr: 47cm)

Solenoid

-192 to 192cm (∆: 384cm)

rmin: 160cm, rmax: 224cm (∆r: 64cm)

Barrel HCAL

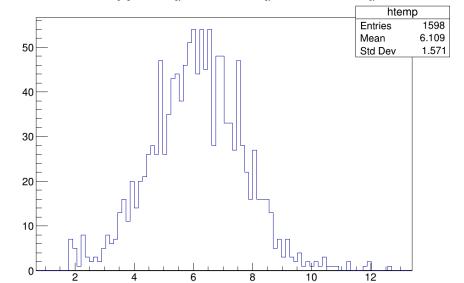
-224cm to 324cm (∆r: 100cm)

• 6 imaging layers separated with
13*1.22 mm = 15.86 mm wide
layers of ScFi (13 layers of fibers)
• 15*13*1.22 mm = 237.9 mm of
ScFi calo in the back
• 1 mm diameter fibers in Pb

Images from

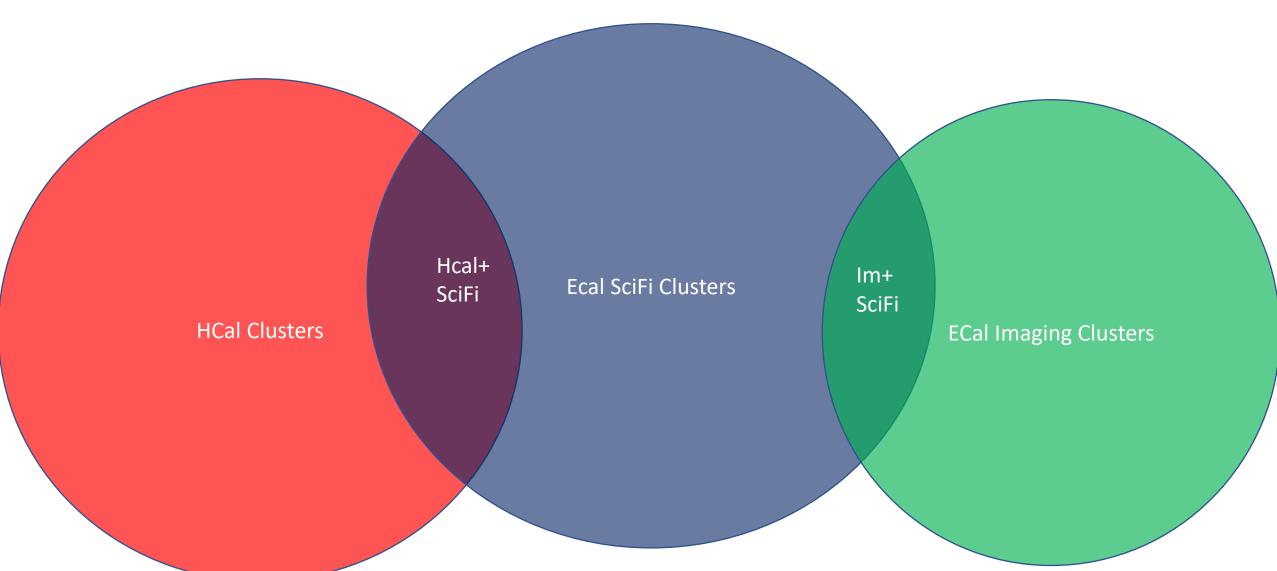
7

ANL group


Full Sim Reco Results

- Please interject if I'm misinterpreting results
 - I haven't looked in-depth at the code used for the reconstruction
- In the data format if there's no cluster, the energy entry is left unfilled
 - Not filled with 0, so when directly drawing in ROOT a plot of the sum of EcalSciFi+EcalImaging+Hcal it only plots points which have all 3 entries filled
 - May lead to some misleading results for resolution, hard to gauge detection efficiency

4	20 G	e'	V K _L				SciFi		Imagii	ng
*	Row	***	Instance	*	HcalBarre *****	*	EcalBarre ******	*	EcalBarre ******	*
*	0	*	0	*			17.284151	*	9.0576734	*
*	. 0	*	1	*		*		*	0.2873802	*
*	1	*	0	*		*	21.082780	*	11.316175	*
*	2	*	0	*		*	16.849378	*		*
*	3	*	0	*		*	18.772605	*	3.6546840	*
*	4	*	0	*		*	2.4567558	*		*
*	5	*	0	*		*	20.863412	*	6.5761132	*
*	5	*	1	*		*	0.5719503	*		*
*	6	*	0	*		*	19.435823	*		*
*	. 7	*	0	*		*	17.776001	*	1.5590604	*
*	. 8	*	0	*		*	0.2746572	*		*
*	9	*	0	*		*	15.540548	*	1.5707118	*
*	10	*	0	*		*	7.2686867	*		*
*	10	*	1	*		*	0.3896910	*		*
*	11		0	*	7.3518447	*	0.5050520	*		*
*	12		0	*		*		*		*
*	13		0	*		*	16.812416	*	3.1569187	*
4	13		0	*		*	2.0538775		3.1309107	*
	14		U				2.0330113			


1M particles fired, only 1k events where all 3 calo had clusters

EcalBarrelImagingClusters.energy+HcalBarrelClusters.energy+EcalBarrelScFiClusters.energy

Want fraction of particles fired that leave at least one cluster in a calorimeter

ROOT evaluates unfilled entry in Draw() selector to FALSE, so sum number of individual events with one cluster in each calorimeter and remove double counting – Effectively no events with exclusive Hcal+Imaging overlap

Average Clusters per Particle (first pass on efficiency)

- NB: K_L can produce multiple (up to 6) ECal clusters
 - Decays to 3 pi⁰ in flight
- N Clusters increases with energy
- This is not so useful in terms of efficiency

Species	N _{clusters} /N _{particles} HCal	N _{Clusters} / N _{particles} ECal SciFi	N _{Clusters} /N _{particles} Ecal Imaging
100 MeV K _L	.0001	.34	.020
500 MeV K _L	.0007	.54	.016
1 GeV K _L	.0011	.77	.029
2 GeV K _L	.0066	.86	.053
5 GeV K _L	.029	.94	.22
10 GeV K _L	.068	.98	.41
20 GeV K _L	.15	1.04	.51

"Efficiency" (Fraction with > 0 Clusters)

Attempt to deconvolute efficiency from N_{clusters}

At 20 GeV (quite rare in DIS at EIC), only 15% of K_L leave a cluster in Hcal

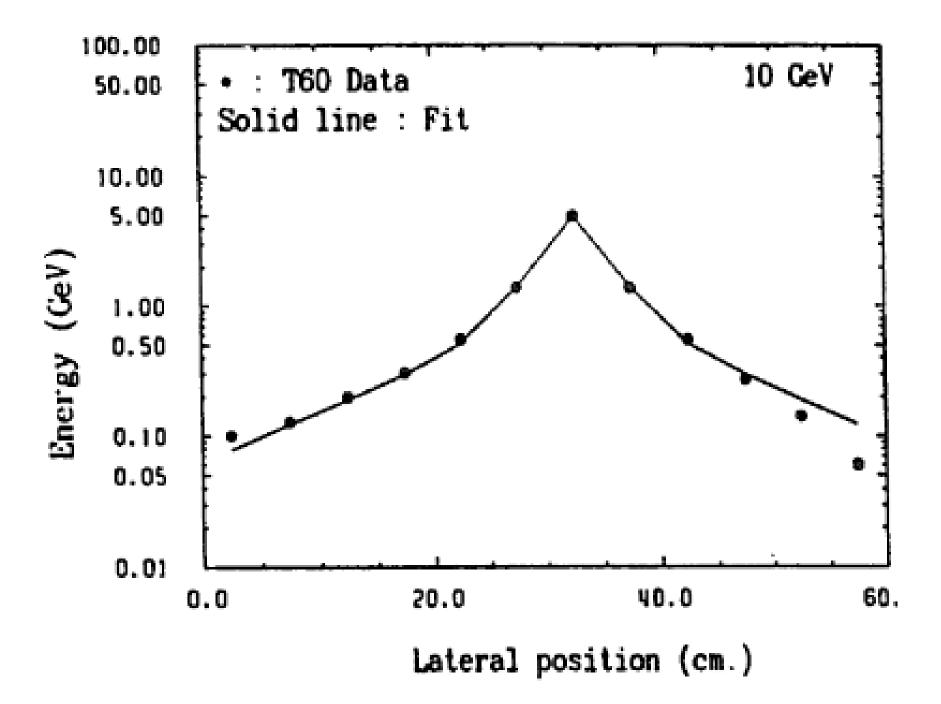
K_L mean free path longer than neutrons

Could also be that some of the lower energy K_L are decaying before the Ecal, $c\tau \sim 4$ meters, let's look at neutrons instead

Species	Hcal		Ecal Imaging	Hcal+SciFi	SciFi+	Total Frac. with > 0 clusters
Species	licai	LCai SCIFI	iiiagiiig	TICAIT3CIFT	IIIIagiiig	Ciusteis
500 MeV K _L	0.000075	0.52	0.016	0.00009	0.009	0.526985
1GeV K _L	0.001	0.72	0.028	0.0004	0.023	0.7256
5GeV K _L	0.029375	0.7875	0.18125	0.00625	0.18125	0.810625
10GeV K _L	0.07	0.8	0.3	0.0021	0.3	0.8679
20GeV K _L	0.15	0.8	0.32	0.08	0.32	0.87

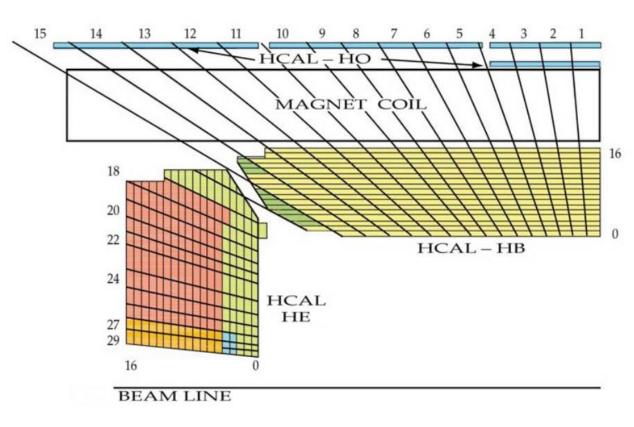
"Efficiency" (Fraction with > 0 Clusters)

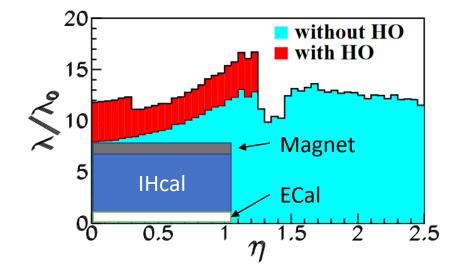
- Neutron efficiency even lower than K_L except at 20 GeV
 - Less likely to interact in the Ecal at lower energies
 - K_L Decays easier to detect
- Sanity Check: $e^{-4} \sim .02$, $e^{-2} \sim .14$
 - Showers in magnet can still leave energy in Hcal
 - If a shower can longitudinally extend by 2 λ_0 , then results are sensible
 - Would naively expect even less coming out of magnet than seen here


			Ecal			Total fraction with > 0
Species	Hcal	Ecal SciFi	Imaging	Hcal+SciFi	Imaging	clusters
500 MeV neutron	0.00001	. 0.14	0.0004	. 0	0.000006	0.140394
1 GeV neutron	0.0016	0.393	0.001229	0.00001	0.000678	3 0.395141
5 GeV neutron	0.028	3 0.76	5 0.1	. 0.078	3 0.1	L 0.71
10 GeV neutron	0.08	3 0.79	0.25	0.031	0.25	0.839
20 GeV neutron	0.175	0.81	0.31	. 0.087	0.31	L 0.898

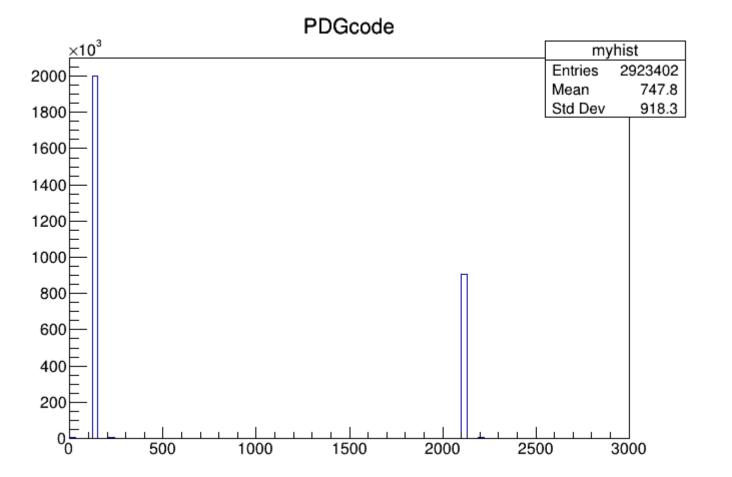
Low energy hadrons are surprising

Conclusions


- Current HCal sees clusters from < 10% of 10 GeV neutrons
 - Can't measure energy, very inefficient neutral ID
- A few options:
 - 1. Say that the EMCal is good enough for handling neutral hadrons, don't build BHCal
 - I have a set of slides on this, can present them now or just post to indico
 - 2. Reduce the material of the magnet, keep BHCal
 - A request: Could SWG do a quick run where they change SS in magnet to aluminum and shoot 10 GeV neutrons?
 - Should test if Al will make things alright, easiest change integration-wise
 - 3. Beef up the EMCal so that it has a better response to hadrons, don't build BHCal
 - Up to experts to decide how to do this, if it's possible
 - I'll be happy to analyze the DD4HEP data from another EMcal model

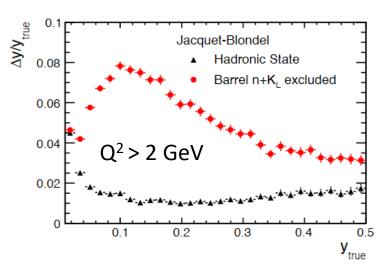

Backup

Case Study: CMS


- Inner Hcal is 5.82 λ
 - Energies obviously much higher, ~ 2 orders of magnitude
- Magnet ID: 5.945 m, OD: 6.9m
 - Radial extent of ~50 cm vs. 64 cm for ATHENA
 - CMS magnet is $\frac{1.4}{\sin \theta}$ int. length
 - 1.4λ @ eta = 0, 2.8λ @ eta = 1.3
- CMS needs as much material as possible to absorb hadrons before muon detectors for muon ID -> Thick magnet has a benefit
 - No such benefit for EIC, thicker magnet only hurts

Neutrons in Kaon Sample

Not one of the normal kaon decay products



mcparticl 130 * 2112 * 130 * 130 * 130 * 130 * 130 * 2112 * 2112 * 2112 * 130 * 130 * 2112 * 130 * 130 * 130 * 2112 * 2112 * 130 * 130 * 130 * 130 * 2112 * 130 * 130 *

Physics Considerations - Inclusive

- Total amount of E-P_z = 2E^e_i
 - For EIC (at highest E_i^e!) this is 36 GeV
 - Quantity is conserved
- Enters directly kinematic reconstruction with hadron, e-sigma, sigma, I-sigma methods
- Crucial quantity for vetoing QED ISR, acceptance losses, photoproduction
 - ISR independent methods will incorrectly assume beam electron energy
 - Almost all HERA DIS analyses include cut on E-P_z
- In barrel, E-P, is maximized (P, small)
 - Losing a neutron with 4 GeV is a 14% loss in total E-P_z at EIC!

$$y_{JB} = rac{\sum (E - p_z)}{2E_e}$$
 Using final hadronic state in -4< η <4

At $Q^2 = 2$, few hadrons in the barrel

At high Q² (> 100), impact of missing neutral energy in the barrel will be much larger

Neutral ID

- Such a thick magnet will also impact ability to even ID neutral hadrons (BaBar, Belle reasoning)
 - Even with .25 λ magnet, neutral efficiency plateau is only ~85% due to early interactions
 - Belle, BaBar measure single neutral hadrons, not in jets along with many charged+neutral hadrons
- Belle and BaBar needed only to ID neutrals because the B decay channel is overconstrained
 - Not the case in jets at EIC
 - Lepton-jet imbalance is a key observable
- Current ATHENA barrel HCal will have low neutral-ID efficiency due to material upstream, no ability to measure energy
- Reconstructing DIS kinematics via all non-electron methods requires measurement of hadronic energy flow, charge tagging not enough

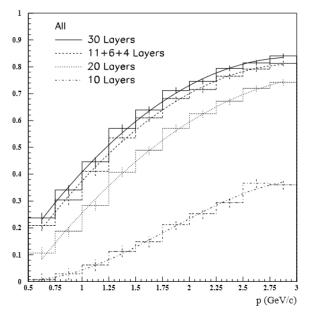
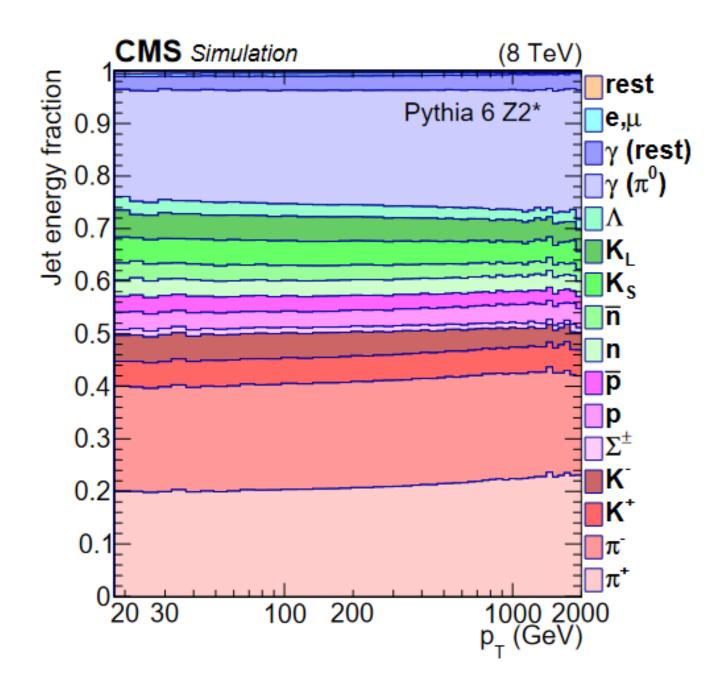



Figure 8-16. Efficiency for detecting K_0^1 s as a function of momentum. The different sets of points represent different segmentations of the flux return iron. A solution with 21 active planes with graded separation is compared.

