
Preliminary Roman Pot DAQ considerations

Outline:

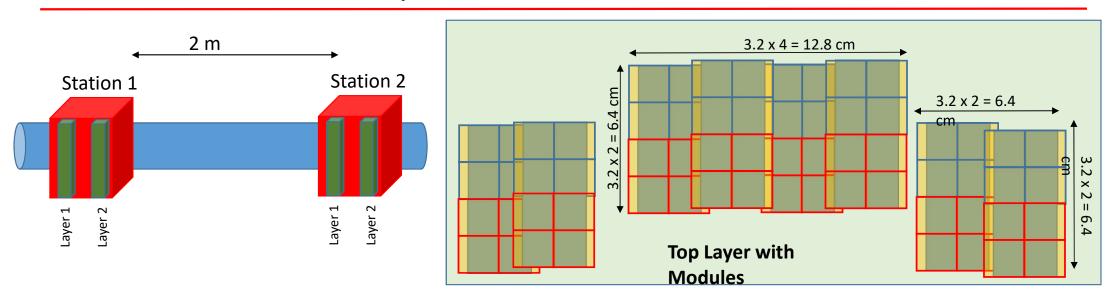
- 1) The ATLAS readout system for timing detector (HGTD) using DC LGAD
- 2) Key numbers / extrapolation for Roman Pots at EIC

ATLAS ASIC occupancy from a few per mil to 10 % depending on radius

	Command	Bit neld	Description
ATLAS average event size from 150 to 250 kBytes	IDLE	10101100	IDLE frame
C ,	TRIGGER	10110010	L0 or L1 trigger
	BCR	10011001	Bunch Counter Reset
ATLAS Data format :	TRIGBCR	01101001	Trigger and BCR
	CAL	11010100	Calibration Pulse
	GBRST	11001010	Global Reset
8 bits fast commands (@ 40 MHz)	SYNCLUMI	01100110	Synchronize luminosity stre
	SETTRIGID	01010011	Set Trigger ID
	TRIGID	01xxxx01	Trigger ID

Data format : 24 bits word with 8b10b encoding.

23 22	21	1.03	16 15		7	6	1 0		
Туре	E	rors		BCID		L0/L1	PB	Header	
23	20	19	16 15 14		7	6	0		16 bits of timing
C	OL	ROW	CRC	TOT		TOA		Hit word	information / per pixel
23			16 15		8 7		0		mormation, per pixer
	bx111	10000		#hits		CRC8		Trailer	

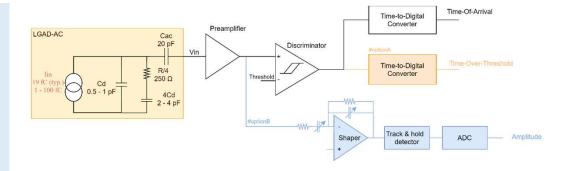

Slow control parameters through I2C 960 with 8 bits registers :

- 4 per pixels \rightarrow 900 registers
- 60 for global slow control

Command	Bit field	Description
IDLE	10101100	IDLE frame
TRIGGER	10110010	L0 or L1 trigger
BCR	10011001	Bunch Counter Reset
TRIGBCR	01101001	Trigger and BCR
CAL	11010100	Calibration Pulse
GBRST	11001010	Global Reset
SYNCLUMI	01100110	Synchronize luminosity stream
SETTRIGID	01010011	Set Trigger ID
TRIGID	01xxxx01	Trigger ID

Table 2: Fast commands

Roman pots detector


Baseline for detector

- Two stations with two layers and 0.5x0.5 mm2 pixels of AC-LGAD (charge sharing)
- In each layer : 32 quad modules per layers, 1 module is 4 ASICs \rightarrow 128 ASIC per layer
- Total : 128 Modules / 512 ASICs (524 288 Channels)
- ASIC size : 1.6 x 1.8 cm² with 1024 channels (32x32)

Extrapolation to EIC Roman Pots readout

Two architectures for the Front End under study :

- ATLAS HGTD like (option A) with TOA + TOT.
 As needed to read neighbour pixels of the hit one discri threshold might not low enough and deteriorate position resolution.
- ASC measurements instead of TOT measurement but need to control power dissipation. Gated ADC and logic to read the 8 neighbours
 Proto expected to be submitted end 2021/early 2022

Trigger-less acquisition

Expected vey low occupancy : < 30 hits/pixel/s (assume threshold at >5 sigma of noise)

(not including the neighbours, so a factor of \times 9 should be accounted for in the readout, especially when using ADC

If 32 bits data for a hit

 \rightarrow

 \rightarrow data rate is 30x32*1024=~1 Mbits/s per ASIC or 9 Mbits/s with neighbours

128 Mbits/s per layer or 1152 Mbits/s (Still to validated by simulation)

 \rightarrow Total detector data rate 512 Mbits /s 4608 Mbits/s

Slow control information : similar numbers of parameters as ATLAS

Data transmission from ASIC to DAQ

- No radiation hardness needed in EIC and low ASIC rate with respect to ATLAS : using IpGBT is not well suited
- Commercial concentrator or custom FPGA board ? One board per layer would have do deal with 128 ASICs and < 200 Mbytes/s of data