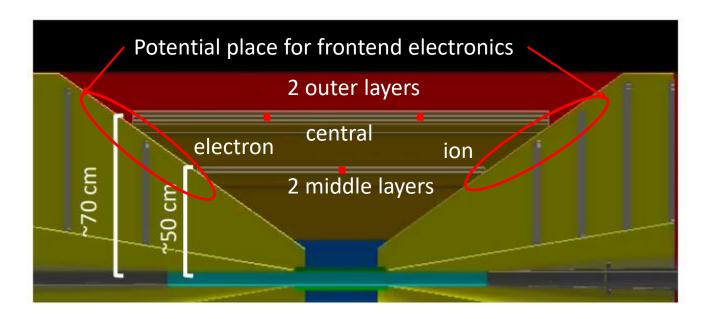
Readout of CyMBaL tracker for Athena@EIC

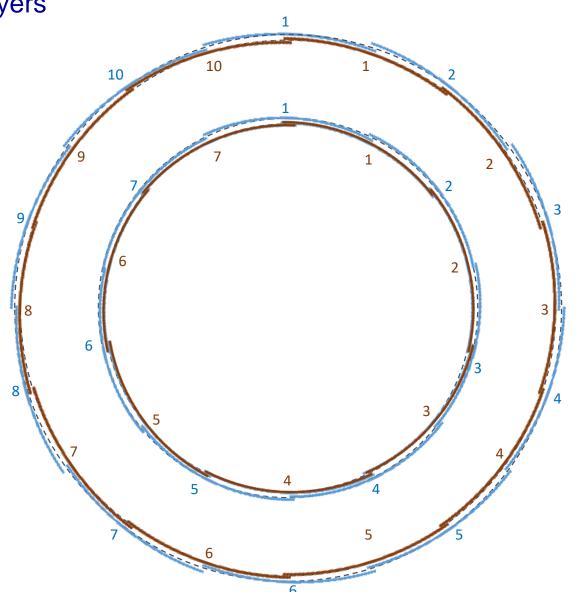
Damien Neyret, Irakli Mandjavidze on behalf of Saclay group

> Athena DAQ WG meeting Sep 30, 2021


CyMBaL (CYlindrical Micromegas BArrel Layers) tracker for Athena@EIC

• 4 layers

- \rightarrow 2 middle and 2 outer
- \rightarrow 2D strip readout
 - Z + C strips per layer
- \rightarrow Middle layers built in 2 modules along Z (beam) axis: electron side and ion side
- \rightarrow Outer layers built in 3 modules along Z (beam) axis: electron side, central and ion side
 - On-going study on how to connect central modules to electronics (flex cables?)
- Number of channels
 - \rightarrow 1.45 mm pitch: 66 000 strips
 - 28K Z-strips & 39K C-strips
 - Assume as a baseline
 - May vary though


• Environment

- \rightarrow Scarce space for electronics
 - Can nevertheless be placed on both sides
- \rightarrow Magnetic field
- \rightarrow Material budget restrictions
 - Impact on cooling
- \rightarrow Radiation?

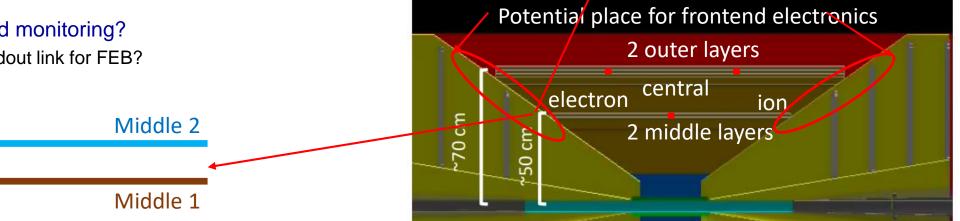
CyMBaL tracker for Athena@EIC

- Same base detector to assemble middle and outer layers
 - \rightarrow Curved according to layer radius
 - \rightarrow Active area: ~650 mm length x ~465 mm width
 - 1.45 mm pitch
 - 448 "C" strips + 320 "Z" strips
- Two middle layers
 - \rightarrow 2 x 7 base detectors each
 - \rightarrow Radial distance 15 mm
- Two outer layers
 - \rightarrow 3 x 10 base detectors each
 - \rightarrow Radial distance 15 mm
- Avoid dead zones
 - \rightarrow Tilted detectors ensuring overlap

damien.nayret@cea.fr irakli.mandjavidze@cea.fr

Space for CyMBaL module electronics

• Place FEBs in the conical space between barrel and end-cup


Middle 2

FEB

- \rightarrow Fixed on structure maintaining CyMBaL tracker
 - Not shown
- \rightarrow Probably will be crowded by other equipment and services

\rightarrow Proper to CyMBaL

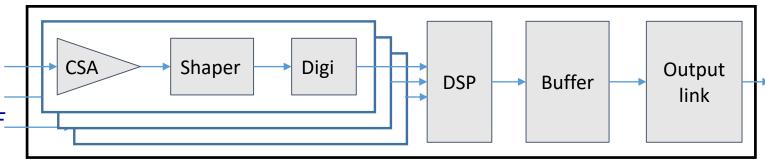
- Readout link: data, clock, synchronization
- LV, HV, gas
- Cooling?
- Slow control and monitoring?
 - Through readout link for FEB?

FEB

FEB

447 mm

224 Mm


FEB.

Widdle J

‡- FEB length given for illustration only

CyMBaL tracker frontend

- FEBs based on multi-channel MPGD ASICs
 - \rightarrow Compatible with streaming readout
 - \rightarrow Typical characteristics
 - Gain: 10 down to 4 mV/fC
 - Peaking time: 75 to 300 ns
 - Detector capacitance: up to 400 pF.
 - 10-12 bit ADC and/or 10-bit TDC
 - \rightarrow On-chip zero suppression
 - Possibly with common mode noise subtraction
 - Sampling ZS: signal shape around ToT
 - Peak finding ZS: amplitude, time and ToT
- Existing ASICs
 - \rightarrow 32-channel Sampa: sampling
 - \rightarrow 64-channel VMM3a: peak finding
- Next generation ASIC
 - \rightarrow On-going common initiative between Brazilian institutes (Sampa) and Irfu (AGET, Dream)
 - Most probably a 64-channel sampling ASIC with common mode correction
 - See for example: <u>https://indico.cern.ch/event/1040996/contributions/4402636/</u>

CyMBaL tracker frontend (cont.)

• LHC-like frontend organization?

- \rightarrow A bi-directional link for clock, synchronization (run control), data, slow control
- \rightarrow Assumes existence of IpGBT-like aggregator ASIC or requires a new development
 - Point to point connections between frontend ASICs and an aggregator ASIC
 - Downstream path is only partially shown

It is not clear if there will be a central (Athena, EIC) group responsible for aggregation / frontend link

CyMBaL tracker frontend data rate: sampling readout

- Sampling ASIC with 12-bit sample per channel
- Signal shape ZS
 - \rightarrow 500 ns readout window when signal is above threshold

• 32-channel ASIC (e.g. Sampa) and 256-channel FEB (e.g. sPhenix FEE for TPC)

Chan kHz	nel rate	Sampling MSPS	Number of samples	32-chanel ASIC Mbit/s	256-chanel FEB Gbit/s	Remarks	
2	(physics)			19	0.16	5.40 Chit/s specestics link univertified	
10	(safe)	20	10	92	0.75	5-10 Gbit/s aggregation link unjustified	
50	(Clas12)			460	3.7	5-10 Gbit/s aggregation link justified	

• New development: 64-channel ASIC and 512 FEB

Chan kHz	nel rate	Sampling MSPS	Number of samples	
2 (physics)				
10	(safe)	50	25	
50	(Clas12)			
	30/09/2021			

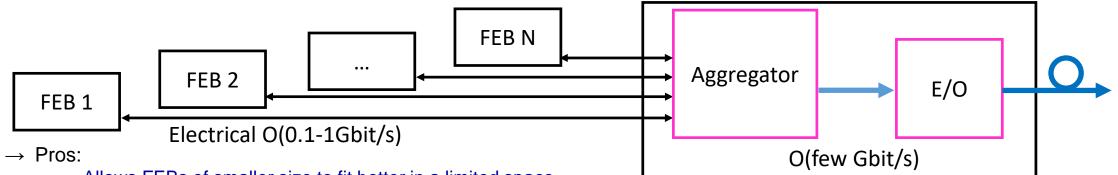
64-chanel ASIC Mbit/s	512-chanel FEB Gbit/s	
46	0.4	
230	1.9	
1 150	9.5	

Remarks	
5-10 Gbit/s ag	gregation link unjustified
5 Gbit/s aggre	gation link is enough
20 Gbit/s aggre	egation link needed

CyMBaL tracker frontend data rate: peak-finding readout

- Peak-finding ASIC
- ZS with time-amplitude readout
 - \rightarrow Assume 12-bit timing, 8-bit ToT and 12-bit amplitude
- 64-channel ASIC (e.g. VMM3a) and 512-channel FEB (e.g. Atlas NSW FEM8)

 \rightarrow Or a new development


Channel rate kHz		64-chanel ASIC Mbit/s	512-chanel FEB Gbit/s	Remarks
2	(physics)	5	0.04	5 10 Chit/a correction link univertified
10	(safe)	25	0.2	5-10 Gbit/s aggregation link unjustified
50	(Clas12)	125	1	2 Gbit/s aggregation link is enough

Good knowledge of channel occupancies (physics, background, noise) is important

A question on aggregation: local concentrator card

- High speed FE-BE connections assume enough aggregated bandwidth to justify multi-Gbit/s links
 - \rightarrow 5-10 Gbit/s or higher
 - $\rightarrow\,$ Especially if the use of IpGBT for EIC is envisaged
- Is a local concentrator card needed?
 - \rightarrow Upstream: only data aggregation, no data treatment
 - $\rightarrow\,$ Downstream: clock, synchronization, slow control

Aggregator unit in close vicinity to FEBs

- Allows FEBs of smaller size to fit better in a limited space
 - e.g.256-channel or even 128-channel FEBs rather than 512-channel FEBs
- Potentially lower power consumption
- Could be used by several sub-detectors
- \rightarrow Cons:
 - More boards to produce and maintain
 - More complex communication protocol between FEBs and aggregator unit

If there is an interest, should there be a central group to define/design the aggregator?

CyMBaL tracker readout: 64-channel ASIC and 512-channel FEB

- Assume integration of 8 64-channel VMM3a or next generation 50 MSPS chips
- System with 66K channels
 - \rightarrow 1 056 ASICs
 - \rightarrow 132 FEBs
 - \rightarrow With a backend link per FEB: 5 32-link Felix equivalents
- Assume 10 kHz channel occupancy, total data bandwidth produced by frontends
 - \rightarrow Signal shape readout: ~250 Gbit/s
 - \rightarrow Time-amplitude readout: ~30 Gbit/s

8 VMM3a size chips can fit to 220 mm long FEB Compatible with example on page 4

Assuming 8 double-row connectors: 0.8 mm pitch

30/09/2021

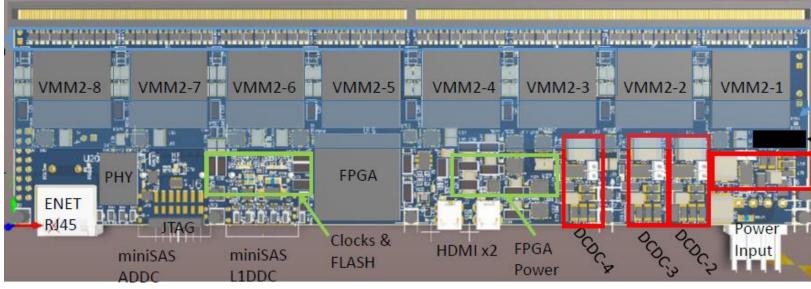
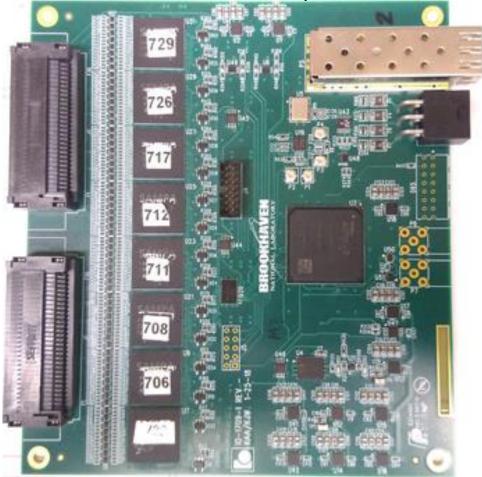


Illustration: Atlas FEM8 prototype with 8 VMM3a: 215 x ~60

damien.nayret@cea.fr irakli.mandjavidze@cea.fr


CyMBaL tracker readout: 32-channel ASIC and 256-channel FEB

- Assume integration of 8 32-channel Sampa or next generation 50 MSPS chips
- System with 66K channels
 - \rightarrow 2 112 ASICs
 - \rightarrow 264 FEBs
 - \rightarrow With a backend link per FEB: 9 32-link Felix equivalents
- Assume 10 kHz channel occupancy, total data bandwidth produced by frontends
 - \rightarrow Sampa @ 20 MSPS: ~100 Gbit/s
 - \rightarrow New ASIC @ 50 MSPS: ~250 Gbit/s

8 Sampa size chips can fit to 150 mm long FEB (Max size allowed to fit all 264 FEBs on tracker periphery)

Assuming the use of 8 double-row connectors: 0.8 mm pitch

Illustration: sPhenix TPC FEE with 8 Sampas: 140 x 140

CyMBaL tracker costing

- Assume 66K-channel system
- Assume 64-channel detector cables, 64-channel ASIC and 512-channel FEB
 - \rightarrow A FE-BE link per FEB
 - \rightarrow Cooling is not taken into account

ltem	Quantity	Unit price \$	Total price k\$
Short FE cables	816	50	40.8
Long FE cables	240	100	24
ASIC	1 056	50	58.8
FEB	132	1 000	132
FE-BE link	132	100	13.2
Backend	6	7 000	42
BE servers	6	7 000	42
LV	1	7 000	7

• Total: \$355k: \$5.5/channel

- \rightarrow Very rough estimation, expect more \$8/channel
- \rightarrow More likely \$10/channel if 32-channel cables, 32-channel ASICs and 256-channel FEBs

Open questions on common services

- The frontend backend communication links
 - \rightarrow If IpGBT is considered, it has to be associated with an optical transceiver
 - VTRX+ with one 2.5 Gbit/s down-link and four 10 (5) Gbit/s up-links
 - Part of the Versatile Link+ elaborated by CERN
 - Will the Versatile Link+ from CERN available for EIC?
 - IpGBT and VTRX+ devices, and very importantly support
 - Is the use of VTRX+ justified?
 - Bandwidth, radiation
 - \rightarrow Can a commercial optical transceiver be used with IpGBT?
 - Protocol and radiation
 - Atlas RPC collaboration considers replacement of VTRX+ by a commercial SFP+ optical transceiver
 - → A possible candidate: Avago AFBR-709SMZ Compatible Module SFP+ 10GBASE-SR 850nm 300m DOM LC MMF from FS
 - 10 Gbit/s with FEC5
- Radiation levels need to be understood
 - \rightarrow TID, neutrons and SEE (latch-up, SEU)
 - \rightarrow At what extent commercial components can be used
- Magnetic field
 - \rightarrow Qualified power regulators

Will there be a central group(s) taking care of these questions?

Summary

- Not yet a complete knowledge of Micromegas cylindrical barrel tracker environment
 - \rightarrow Construction, occupancy, space, radiation
 - \rightarrow Figures below to be taken with caution
- Assuming 66K channel tracker as a baseline
 - \rightarrow @ 10 kHz channel hit rate front-end link bandwidth at least factor 5 above expected rates from physics
 - Signal shape readout at 50 MSPS: ~250 Gbit/s
 - Time-amplitude readout: ~30 Gbit/s
 - Further data reduction could / must be done either in FEP (if any) or in the on-line filtering farm
- Assuming 64-channel MPGD ASIC and 512-channel FEB
 - \rightarrow 1 056 ASICs
 - \rightarrow 132 FEBs
 - \rightarrow 6 Felix equivalents with 32-links
- Open questions on central support for
 - \rightarrow Common FE-BE link
 - \rightarrow FE aggregation design of a common aggregator unit
 - \rightarrow Precision clock distribution validation metrics
 - \rightarrow Magnetic field and radiation compatible components