

HERAPDF2.0 approach to ATHENA data

Studying impact of ATHENA data on parton distributions in proton using HERAPDF2.0 framework Very preliminary results

Neutral Current

$$\frac{d^2\sigma_{NC}^{\pm}}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \left[Y_+F_2 \mp Y_-xF_3 - y^2F_L \right]$$

Proton structure functions:

- Sensitive to quarks
- Sensitive to valence distributions:
- Sensitive to gluon

$$F_2 = x \sum e_q^2 [q(x) + \bar{q}(x)]$$

$$xF_3 = x \sum 2e_q a_q [q(x) - \bar{q}(x)]$$

$$F_q \sim \alpha_q \times q$$

• Gluon also from scaling violation and charm+jet data

Charge Current: flavor decomposition

 $\sigma_{CC}^{-} \sim x[u+c] + x(1-y)^2[\bar{d}+\bar{s}]$

 $\sigma_{CC}^+ \sim x[\bar{u} + \bar{c}] + x(1-y)^2[d+s]$

Global analysis of parton distributions

Goal: determination of the *input distributions* (for light quarks and gluons): Method: Parametrizations $xf(x, Q_0^2) = Nx^a(1-x)^b$ function(x) and usual *statistical estimation* (fits):

$$\chi^{2}(p) = \sum_{i=1}^{N} \left(\frac{\operatorname{data}(i) - \operatorname{theory}(i, p)}{\operatorname{error}(i)} \right)^{2}$$

Position of minimum gives the value and curvature gives the error (region within a certain "tolerance" $\Delta \chi^2 = 1$) (Monte Carlo methods can also be used)

Usually the chi-square definition is more sophisticated, experimental correlations are also treated, etc.

1 fb⁻¹ HERA data - exclusively! - used as input to global QCD fit HERAPDF2.0

• Parton densities parametrised @ $Q^2 = 1.9 \text{ GeV}^2$

$$xf(x) = Ax^{B}(1-x)^{C}(1+Dx+Ex^{2})$$

$$xg(x), xu_{v}(x), xd_{v}(x), x\bar{U}(x), x\bar{D}(x)$$

- Evolution using DGLAP equations
- 14 parameters determined in paramerisation scan
- Heavy quarks from Roberts-Thorne Variable Flavor Number Scheme

QCD fits performed using HERAFitter package <u>www.herafitter.org</u>

HERAPDF2.0 parameterisation

$$\begin{aligned} xg(x) &= A_{g} x^{B_{g}} (1-x)^{C_{g}} - A'_{g} x^{B'_{g}} (1-x)^{C'_{g}}, \\ xu_{v}(x) &= A_{u_{v}} x^{B_{u_{v}}} (1-x)^{C_{u_{v}}} \left(1+E_{u_{v}} x^{2}\right), \\ xd_{v}(x) &= A_{d_{w}} x^{B_{d_{v}}} (1-x)^{C_{d_{v}}}, \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1+D_{\bar{U}} x), \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}}. \end{aligned}$$

$$A_{-ubar} = A_{-dbar} \\ B_{-ubar} = B_{-dbar} \\ B_{-ubar} = B_{-dbar} \end{aligned}$$

Parameters A_uv and A_dv are determined using quark counting rules and A_g using momentum sum rule

$$x\overline{U} = x\overline{u}$$
 and $x\overline{D} = x\overline{d} + x\overline{s}$

Model parameters for HERAPDF2.0

Data in HERAPDF2 fit

H1 and ZEUS

ATHENA data \rightarrow from yellow report & HERAPDF2

- ATHENA pseudo-data used in fits:
 - 1) Get prediction from HERAPDF2.0 NLO in ATHENA $x-Q^2$ grid
 - 2) Smear with uncorrelated uncertainties point-by-point
 - 3) Smear with correlated systematic uncertainty each sample (same factor for each sample)
- ATHENA uncertainties used in fits, files from Barak:
 - Statistical
 - Total uncorrelated
 - Total correlated
- Bins & uncertainties according to EIC yellow report, optimistic & pessimistic options
- Pessimistic scenario → less bins + higher uncertainties

Data: HERA + ATHENA optimistic

Region not covered by HERA \rightarrow impact on high-x PDFs expected

~

Wichmann,

13.09.21,

Various data in other PDF sets

Analysis presented here is done @ NLO \rightarrow can be easily repeated @ NNLO

Analysis presented here includes experimental uncertainties only → total uncertainty can be easily included

DESY

PDFs with HERA and ATHENA data

- Shown PDFs for
 - HERAPDF2.0 NLO
 - ATHENA NC+CC
 - Optimistic
 - Pessimistic
- PDF very similar
- Uncertainties very interesting → let's have a look

Relative uncertainties: some improvement for low & middle x and rapid decrease of uncertainties for low x

High-x region better visible

Relative uncertainties: quarks

High-x region better visible: quarks

EIC yellow report style figures

Impact of separate data samples

 \rightarrow similar trends observed for sea quarks

Low & middle x

NC 18x275 sample seems to have largest impact on valence quarks low-x uncertainties → see next slide for explanation

<u>High x</u>

Similar impact of
 various beam samples
 → they all cover
 phase-space "empty"
 at HERA

Impact at low & middle x

 NC 18x275 data add huge amount of statistics at low & middle x not present for other energies → effect on this kinematic region more significant

Pessimistic option - what matters for PDFs?

• At low & middle x bins are not cut out in pessimistic version

 \rightarrow impact on uncertainties comes from decreased precision of data

Pessimistic option - what matters for PDFs?

At high x and low Q² bins are cut out in pessimistic version

 \rightarrow similar impact on valence quarks from cut-out bins and increased uncertainties

- Impact of ATHENA data on PDF precision can be studied in a clean way using HERAPDF2.0 approach
- Preliminary studies using EIC yellow report numbers show clear huge improvement of PDF uncertainties at high x and also at low&mid x
- This kind of studies can be repeated with various assumptions on data and uncertainties
 - Also at NNLO and with full uncertainties
- I would be really happy to hear your suggestions/advice what to study, where to look, how to approach different issues

Additional slides

Pessimistic option - what matters for PDFs?

 $Q^2 = 1.9 \text{ GeV}^2$

0×U/x0 **SxD/xD 4** pess-all 4 pess-all >> pess-bins → pess-bins 1.04 H pess-errors HH pess-errors e optimistic e optimistic 1.02 1.2 0.98 0.8 0.96 0.6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 δxD/xD Ux/Dx $Q^2 = 1.9 \text{ GeV}^2$ $Q^2 = 1.9 \text{ GeV}^2$ **4** pess-all 4 pess-all ↔ pess-bins → pess-bins H pess-errors **H** pess-errors optimistic e optimistic 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 $Q^2 = 1.9 \text{ GeV}^2$

 \rightarrow no impact of cut-out bins on anti-quarks

Quite surprising, I need • to understand this

Cumulative impact - high x

~

 $\frac{d^2\sigma_{NC}^{\pm}}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \left[Y_+F_2 \mp Y_-xF_3 - y^2F_L \right]$

Neutral Current

Proton structure functions

$$F_2 = x \sum e_q^2 [q(x) + \bar{q}(x)]$$

• Sensitive to quarks

$$xF_3 = x\sum 2e_q a_q[q(x) - ar q(x)]$$

Sensitive to valence distributions

 $F_L \sim \alpha_s \times g$

- Sensitive to gluon
- Gluon also from scaling violation and charm+jet data

Gluon meets F_L

- H1 performed direct extraction of gluon density from $F_{\rm L}$ measurement @NLO

Gluon approximated from F_L agrees with gluon determined from scaling violations

https://www.herafitter.org

Color decomposition of uncertainties

Parametrisation uncertainties - largest deviation

🔶 Model uncertainties

- all variations added in quadrature

Experimental uncertainties:

- Hessian method
- Conventional $\Delta \chi^2$ = 1 => 68% CL

Variation	Standard Value	Lower Limit	Upper Limit
$Q_{\rm min}^2$ [GeV ²]	3.5	2.5	5.0
Q_{\min}^2 [GeV ²] HiQ2	10.0	7.5	12.5
$M_c(\text{NLO})$ [GeV]	1.47	1.41	1.53
M_c (NNLO) [GeV]	1.43	1.37	1.49
M_b [GeV]	4.5	4.25	4.75
f_s	0.4	0.3	0.5
μ_{f_0} [GeV]	1.9	1.6	2.2
Adding D and E parameters to each PDF			

 $\mathbf{\overline{\mathbf{x}}}$

Proton structure

Inclusive measurements from HERA are core of every parton density extraction

- PDFs used in interactions with proton: LHC, Tevatron, HERA
- Precision of many measurements often limited by PDF uncertainty

