

$\begin{array}{l} Comparison \ of \ x, \ y, \ Q^2 \\ reconstruction \ methods \end{array}$

P.P. Allport, L. Gonella, P.G. Jones, <u>S. Maple</u>, P.R. Newman 13th of September 2021

Introduction

- Aimed to create plots that clearly show the performance of different reconstruction methods (e.g. electron method, JB method)
- Reconstructed kinematic variables from EICSmear output:
 - Electron, JB, Double Angle, Σ and e- Σ methods
- Wrote values to tree and produced plots detailing distribution of reconstructed values (x_{rec}/x_{true}, y_{rec}/y_{true}, Q²_{rec}/Q²_{true})
- Working on implementation for full simulation output \rightarrow problems arise:
 - Need to account for crossing angle in reconstruction methods
 - Initial state QED radiation present?

*Available at

https://github.com/JeffersonLab/dis-reconstruction

EICSmear implementation

- Used Barak's DIS reconstruction code* as a starting point \rightarrow Added Σ and e-
- Σ methods
- Extracted x, y, Q², found x_{rec}/x_{true} etc
- Calculated standard deviation of x_{rec}/x_{true} etc at various x, y, Q2 values and plotted in a suitable form

EICSmear implementation

- Clearly while a Gaussian fit would work well for certain methods for certain x, y, Q² cuts, other methods do not fare so well
- Current approach is to take the standard deviation of the values w.r.t. mean, could alternatively take std dev w.r.t. 1
- Histogram mean values also of interest

- Additionally, the current EICSmear implementation for hadrons mixes smeared calorimeter and tracking information → this can cause unusual behaviour
 - For consistency could try doing $p_z = Ecos(\theta)$, or $E = sqrt(p^2 + m^2)$ (and either neglect m or use π mass) to use only information from either calorimeters or tracks

Resolution plots*

00

Resolution plots*

- Cuts:
 - 0 < y_{true} < 1
 - $0 < Q^2_{true} < 200 \text{ GeV}^2$
 - 0 < x_{true} < 0.5

00

Resolution plots*

- Cuts:
 - 0 < y_{true} < 1
 - $0 < Q_{true}^2 < 200 \text{ GeV}^2$
 - 0 < x_{true} < 0.5
- Electron method tends to perform the best (excluding at low y)
- Expect methods using hadron information to improve with input optimisations

90

Full Simulation Output

- Currently implementing for full simulation reconstructed output files available on S3
 - Strange behaviour when reconstructing x, y, Q^2 for reconstructed output files:

Reconstruction with 25 mRad crossing angle

 The presence of a crossing angle should not present any problems when reconstructing from 4 vectors:

$$Q^2 = -q^2$$
 $x = \frac{-q^2}{2p \cdot q}$ $y = \frac{p \cdot q}{p \cdot e}$

- However once we begin reconstructing by JB etc, the presence of the crossing angle will begin to affect reconstruction
 - \rightarrow boost to head on frame
- Discussion with software working group would be beneficial for this

Summary

- Have a plot format for viewing x, y, Q² reconstruction performance
 - Tested with EICSmear YR matrix smeared Pythia 6 output
- Implementing for Full simulation output
 - Problems encountered reconstructing from MC truth information

Next Steps

- Understand/resolve problems reconstructing truth information (full sim)
- Investigate optimised hadron reconstruction and electron ID
- Implement reconstruction methods such that they work with 25mRad crossing angle
- Produce benchmark plots that compare reconstruction methods for various kinematic cuts