

BERKELEY LAB

Troubleshooting experience: ²³Ne β- decay data normalization and systematic uncertainty

> M. Shamsuzzoha Basunia USNDP virtual meeting, Nov 8-10, 2021

²³Ne β - decay

β⁻ radiations

$\mathbf{E}\beta^{-}$	E(level)	Ιβ ^{-†}	Log ft	Comments
(1393.75 11) 2.4×10 ³ 1 3950 50 4383 8	2982.062076.01439.9910.0	$\begin{array}{ccccccc} 0.065 & 3 \\ 1.10 & 4 \\ 32.0 & 13 \\ 66.9 & 13 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 Εβ⁻,Iβ⁻: From 1957Pe12, Iβ=1.00 15. Εβ⁻,Iβ⁻: From 1957Pe12. Iβ=32 3. Other value: Iβ=32 1 (1963Ca06). Εβ⁻,Iβ⁻: From 1963Ca06 (PRC 132, 2239, 1963), Iβ=67 1. Other value: Εβ=4390 50, Iβ=67 3.
† Absolute inte	nsity per 100 d	lecays.	7	

 $\gamma(^{23}Na)$

		Mi	ssing th	ne norm	alization note	
Eγ	E(level)	$I\gamma^\dagger$	Mult.	δ	Comm	ients
439.986	439.991	33.0 13	M1+E2	+0.058 3	Iγ: 4% uncertainty assumed by the eva	luator
1635.96	2076.01	1.00 4	M1+E2	+0.19 2		
2075.91	2076.01	0.101 6	E2+M3	-0.14 11		
2541.92	2982.06	0.027 2	M1+E2	-0.09 3		
2981.85	2982.06	0.038 2	M1(+E2)	-0.012		

Communications:

• User: Main disagreement was on the beta feeding uncertainty

	20071102			
Level	$\%\beta$ -feeding	unc	% <u>unc</u>	
g.s.	<mark>66.9</mark>	1.3	1.94	
1st ex. state	32	1.3	4.06	
2nd ex. state	1.10	0.04	3.64	
3rd ex. state	0.065	0.003	4.62	
1				

2007Fi02

From Iγ balance

User

%β-feeding	unc	final <u>unc</u>	% <u>unc</u>
67	3	3	4.48
32	3	3	9.38
1.10	0.04[10]	0.11	9.79
0.065	0.003[6]	0.007	10.32

From	_β =32(3)	1957Pe12

Other
$$I_{\beta}$$
=32(1) 1963Ca06

During A=23 revision:

- Checking data in older evaluations:
 - 1998En04 (NP), 1990En08 (NP), 1978En02 (NP)
 - Table of Isotopes; 7th Edition; C.M. Lederer, V.S. Shirley, 1978
 - Table of Radioactive Isotopes; Browne, Firestone, Shirley, 1986

Pho $\langle \gamma \rangle$	= 165 5 ke	e) V	
$\gamma_{\rm mode}$	γ (keV)	$\gamma(\%)^{\dagger}$	γ : (norm: $\gamma_{0.440}$ (γ 32.910%), from level scheme, EB) 0. ($\uparrow_{\gamma}100$), 1.6393 ($\uparrow_{\gamma}3.01$), 2.0793 ($\uparrow_{\gamma}0.312$), 2.
y (M1+0.3%E2)	439.85 13	32.9	$(1_{\gamma}0.0626)$, 2.9053 $(1_{\gamma}0.1156)$ Ge(Li), scint, Ge(Li)-scin coinc, scint $\gamma\gamma$ sum coinc {NP A107 236(68), NP 69 384(
(E2+3.0%M3)	2076.3 3	0.102 7	others: {PScr 5 159(72), PR 105 647(57), PR 101 774(56)}
(M1+0.9%E2)	2542.45 19	0.0270 20	
(M1)	2982.25 17	0.0378 20	

Uncertainty: Excited state β feeding in ²³Ne β - decay

Uncertainty: Revised dataset (²³**Ne** β **- decay)**

β^{-} radiations

E(decay)	E(level)	Iβ ^{-†‡}	Log ft			(Comments	
(1394.0 7) (2298.9 7) (3935.5 9) (4375.80 10)	2981.8 2076.9 440.3 0.0	0.065 4 1.10 6 31.9 10 67 1	6.13 <i>3</i> 5.82 2 5.38 2 5.27 <i>1</i>	E(decay),I E(decay),I E(decay): Iβ ⁻ : 67 1	$β^-: Eβ=2.4 \times 1$ $β^-: Eβ=3950 5$ 4383 8 (1963C (1963Ca06) and	10 ³ 1 (1957Pe 0 (1957Pe12). a06) and 4390 1 67 3 (1957P	e12). I β =1.00 15 (. I β =32 1 (1963Ca) 50 (1957Pe12). Pe12).	1957Pe12). a06) and 32 <i>3</i> (1957Pe12).
[†] From γ-r [‡] Absolute Ιγ normaliza	ay intensity intensity pe tion: From	balance. r 100 decays $\Sigma I(\gamma+ce)$ to	. g.s.=33	1 (100 – 6	$\frac{\gamma(^{23}\text{Na})}{7 1 (1963\text{Ca0})}$	5)), assuming	1% statistical ur	certainty for the 440γ .
E _y †	Ι _γ ‡#	E _i (level)	J ^π _i	$E_f J_f^{\pi}$	Mult. [†]	δ†	α [@]	Comments
440.5 6	100	440.3	5/2+	0.0 3/2+	M1+E2	+0.065 5	5.45×10 ⁻⁵ 8	% $I\gamma$ =32.9 <i>10</i> E _{γ} : 440 (1974A103), 440.0 <i>6</i> (1968Mo03). I _{γ} : 33.0 (1974A103).
* 1974A1 uncerta	03 present 1 inties of $I\gamma$	lγ relative to (1974A103)) Iγ(440) are statis	=33 (listed integrational states) = 33 (listed in the second states) = 33 (listed in t	in comments). A larger system	Evaluators prinatic uncertain	resent I γ relative nty can be expect	to $I\gamma(440)=100$. The ed for the cylindrical gas cell

(diameter 7.5 cm and height 2 cm) counting geometry. However, the recommend uncertainty of the absolute γ -ray emission probability is expected to be valid due to the unique feature of the decay scheme as $I\gamma(1+\alpha)(440)$ represents 99.6% of $\Sigma I\gamma(1+\alpha)$ to the g.s. from excited states and the β branching to the g.s. and 1st excited state dominate the total I β , (67+32)=99%, that yields the same uncertainties as $\% I\beta$ =67 3, 32 3 (1957Pe12), 67 1, 32 1 (1963Ca06), for the g.s. and 1st excited states, respectively. As a result, the uncertainty of the $I\gamma(440)$ can be considered equivalent to $\Delta I\beta$ (1st excited state at 440).

Thoughts on uncertainty statements in decay datasets:

- 1974Al03 used a cylindrical cell (diameter:7.5 cm, height: 2 cm)
- About 15% uncertainty for detector efficiency can be estimate for counting geometry. No statement in 1974Al03.
- Stated as "a larger systematic uncertainty" in ²³Ne b- decay

Pho $\langle \gamma \rangle$	= 165 5 ke	e) V
γ _{mode}	γ(keV)	$\gamma(\%)^{\dagger}$
~ (M1+0.3%E2)	439.85 13	32.9
γ (M1+3.5%E2)	1636.5 3	0.993
γ (E2+3.0%M3)	2076.33	0.102 7
γ (M1+0.9%E2)	2542.45 19	0.0270 20
~ (M1)	2982 25 17	0.0378 20

LD:57 cm 10 cm

7.5 cm

1986BRZQ

Table of Radioactive Isotopes, Browne, Firestone, Shirley, 1986

Perhaps no guideline or policy is available on this issue

Conclusions:

- In ENSDF/NDS more data less text as expected.
 - For special cases additional text is helpful not only for users but also for the evaluators later.
 - ✓In the latest revision notes are added to follow the facts of normalization and related data in ²³Ne b- decay dataset.
- There are different methods for decay data normalization.
 - It seems any statements would be useful about systematic uncertainty, when applicable.
 - Reporting of statistical and systematic uncertainties is a common practice in the literature, what about in NSD?

Any comments/thoughts?

Thank you

