
ENSDF Modernization
From 80-Column Text
to JSON-Formatted Files

Benjamin Shu
National Nuclear Data Center

Brookhaven National Laboratory

ENSDF Overview

• Database of 33,000+ evaluated nuclear physics data sets
• Structure, decay, reactions, etc.

The ENSDF Format

• Text files with maximum of 80 characters per line
• Datasets identified by mass/nuclide and a dataset ID (DSID)

Data is from
40-Calcium

Record type
written here

Lines stop
at/before 80

DSID given as
non-unique text

The ENSDF Format (contd.)

• Each dataset belongs to a category which defines its use:

• Adopted Levels, Gammas (4,100 datasets)
• Excitation state energies
• Gamma ray emissions (from levels)
• Q-record of common decay energies

• Decay (7,583 datasets)
• Parent and daughter nuclides, emitted particles
• Normalization of radiation energies

• Reaction (20,716 datasets)
• Comments describing experiment (targets, beams, etc.)

The ENSDF Format (contd.)

• ENSDF datasets are composed of records
• Identified using a single character in column 8
• 10+ types, each with unique conventions
• Written as one or more 80-column lines

P Parent (1 line)

N Normalization (1 line)

G Gamma (1 line)

L Level (2 lines)

• Datasets in each category usually contain specific record types:

The ENSDF Format (contd.)

Record Type Adopted Levels Decay Reaction
History Yes Yes Yes

XREF Yes No No

Reference No Yes Yes

Comment Yes Yes Yes

Level Yes Maybe Maybe

Gamma Maybe Maybe Maybe

Q-Values Yes No No

Why JSON?

• The 80-column format saves space at the cost of user-friendliness

Why JSON? (contd.)

• JSON data is easier to adapt for programming uses
• Web programming

• JSON is derived from JavaScript, which is used in >97% of all websites

• Object-oriented databases
• JSON-based documents enable flexible design

ENSDF To JSON (Step 1)

• Most basic step is reading a single ENSDF record
• First, define a Reader which parses one or more lines

public abstract class Reader<T> {
// Is this the right kind of record?
public abstract boolean canRead(String line);

// Read lines from the beginning
public abstract int read(List<String> list_lines);

// Read lines from a starting position
public abstract int read(List<String> list_lines, int start);

}

ENSDF To JSON (Step 2)

• Add specific Reader classes to handle each type of record
• Define Record objects to store parsed data

Reader

HistoryReader

CommentReader

XREFReader

LevelReader

GammaReader

...

Record

HistoryRecord

CommentRecord

XREFRecord

LevelRecord

GammaRecord

...

235U H ...

235U C ...

235U X ...

235U L ...

235U G ...

...

ENSDF Data

ENSDF To JSON (Step 3)

• Assemble a completed Dataset using Record objects

HistoryRecord

QValueRecord

LevelRecord

GammaRecord

GammaRecord

LevelRecord

...

...

Dataset
Nuclide: 235-U
History: ...
Q-Values:{}
Levels: [
0: [],
1: [],
...

]

ENSDF To JSON (Step 4)

• Print the completed Dataset as a JSON-formatted text file

Dataset
Nuclide: 235-U
History: ...
Q-Values:{}
Levels: [
0: [],
1: [],
...

]

{
“nuclide”: ”235U”,
“history”: { ... },
“qValues”: { ... },
“levels”: {
“0”: {
“gammas”: {}

},
...

}
}

Theory to Practice

• Java library used to build an ENSDFToJSON executable, which:
• Retrieves text for all ENSDF datasets
• Builds Dataset objects from each file
• Prints those Dataset objects as JSON files

• Can convert 33,385 ENSDF files
in around 7-8 minutes
• The power of multithreading!

Ongoing Development

• We have JSON files – now what?
• Building and testing schema validation

• JSON files need to be checked for “correct” formatting
• Will be needed for future evaluations

• Currently finalizing format for the Adopted Levels
• Adding details, field names, etc.
• Being handled by a subprogram named ConvertAdopted

• Re-thinking ENSDF as an object-oriented database
• Prototype designs using CouchDB

Lingering Questions

• Comments
• Converted to LaTeX through Java-NDS
• Often contain valuable information which is difficult to extract
• Will require natural language processing (i.e. machine learning)

What Comes Next?

• ENSDF modernization is a 3-year project
• Currently at the end of Year 1
• Objective: Make JSON draft documents public in Year 2

• Database to be re-designed after finalizing formats

• JSON files will be distributed through the ENSDF website
• Will be available along with original 80-column format
• Possible RESTful API?

