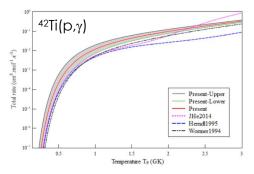
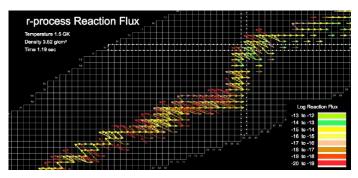
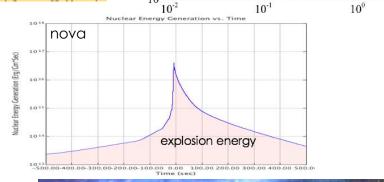
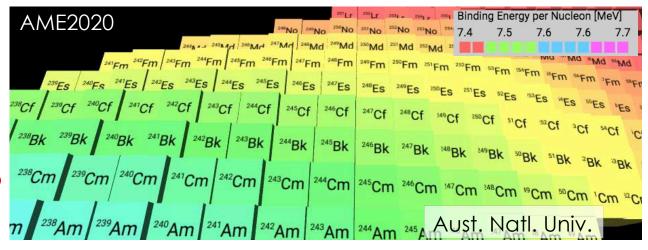

ORNL is managed by UT-Battelle, LLC for the US Department of Energy


Members and Scope of Activities



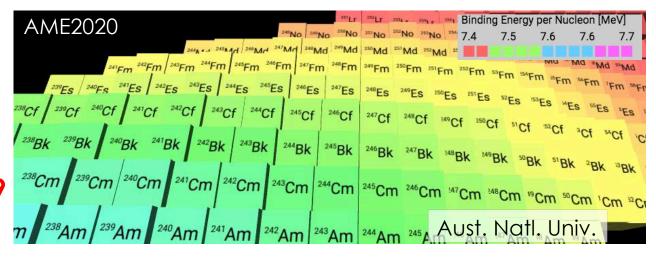



UCASTRODATA.ORG

- Members and Activities:
 - Caroline Nesaraja: Research Staff Member ENSDF evaluator
 - Murray Martin: Subcontractor ENSDF evaluator and consultant
 - Michael Smith: Research Staff Member nuclear astro data, software systems
 - Larry Zhang: Student nuclear astrophysics data

Caroline Nesaraja Murray Martin

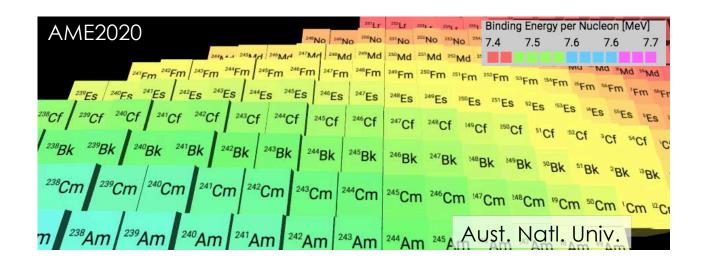
• ORNL responsibility: A=241-249



	Current	Current			New Lit Cut Off		
	Lit Cut Off	Publication					
A	Date	Year	Authors	Reference	Date	Latest Status	New Evaluator
241	Sep-15	2015	C.D. Nesaraja	NDS 130 (2015) 183			
242	Sep-01	2002	Y. Akovali	NDS 96 (2002) 177		Post Rev- Submitted	M. Martin
243	Sep-13	2014	C.D. Nesaraja & E.A. McCutchan	NDS 121 (2014) 695			101000000000000000000000000000000000000
244	Aug-17	2017	C.D. Nesaraja	NDS 146 (2017) 387			
245	Jun-10	2011	E. Browne & J.K. Tuli	NDS 112 (2011) 447		Post Rev	C.D. Nesaraja
246	Jan-11	2011	E. Browne & J.K. Tuli	NDS 112 (2011) 1833			
247	Mar-14	2015	C. D. Nesaraja	NDS 125 (2015) 395			
248	Sep-14	2014	M.J. Martin	NDS 122 (2014) 377			
249	Dec-10	2011	K. Abusaleem	NDS 112 (2011) 2129		Submitted	C.D. Nesaraja

Caroline Nesaraja Murray Martin

• ORNL responsibility: A=241-249



sorted by cut-off date

Current		Current			New		
Lit Cut Off		Publication			Lit Cut Off		
Date	Α	Year	Authors	Reference	Date	Latest Status	New Evaluato
Aug-17	244	2017	C.D. Nesaraja	NDS 146 (2017) 387			
Sep-15	241	2015	C.D. Nesaraja	NDS 130 (2015) 183			
Sep-14	248	2014	M.J. Martin	NDS 122 (2014) 377			
Mar-14	247	2015	C. D. Nesaraja	NDS 125 (2015) 395			
Sep-13	243	2014	C.D. Nesaraja & E.A. McCutchan	NDS 121 (2014) 695			
Jan-11	246	2011	E. Browne & J.K. Tuli	NDS 112 (2011) 1833			
Dec-10	249	2011	K. Abusaleem	NDS 112 (2011) 2129		Submitted	C.D. Nesaraja
Jun-10	245	2011	E. Browne & J.K. Tuli	NDS 112 (2011) 447		Post Rev	C.D. Nesaraja
Sep-01	242	2002	Y. Akovali	NDS 96 (2002) 177		Post Rev- Submitted	M. Martin

 Mass chains we evaluated that are outside ORNL's responsibility:

A=137 - Post Review

A= 208 - Published

A= 216 - Underway

A= 63 – Next in line for evaluation

FY21 Evaluations

- A=249 8 Nuclides [C. Nesaraja] ²Cm ²⁴⁰Cm ²⁴¹Cm ²⁴²Cm ²⁴³Cm ²⁴³Cm ²⁴⁵Cm ²⁴⁵Cm ⁴⁴⁶Cm ⁴⁷⁶Cm ⁴⁸⁶Cm ⁴⁷⁶Cm ⁵⁰⁶Cm ¹⁶⁷Cm ²⁴⁶Cm ²⁴⁶Cm
- A= 242 post review edits submitted [M. Martin] 42Am 243Am 244Am 245A Aust. Natl. Univ.

AME2020

FY21 Edits in Progress

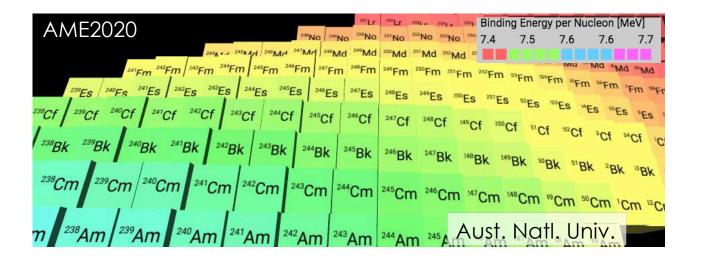
- A=137 16 nuclides [C. Nesaraja]
- Very lengthy and challenging mass chain
- post review editing and addition of new work in progress

FY21 Review

- A=48 [C. Nesaraja]

Others

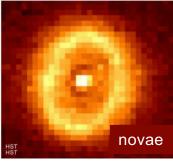
- Guidelines for Evaluators [M. Martin]- complete



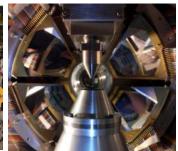
• FY22 Post Review Edits [C. Nesaraja]

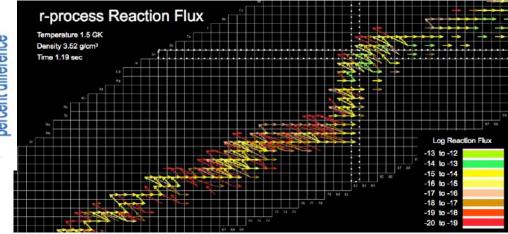
A=137, A=66 A=245

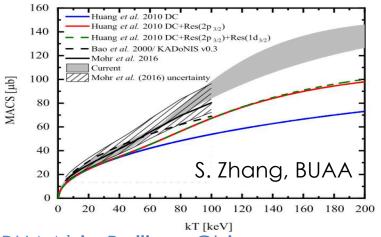
FY22 Evaluation

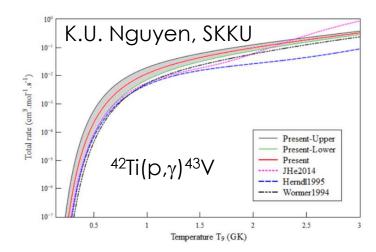

A=216 [M. Martin]

Nuclear Astrophysics Data









- focus on Stellar Explosions
- we **closely couple data activities to measurements** on unstable nuclei as recommended in NSAC LRP and listed as DOE NP milestones
- Personnel
 - Michael Smith Staff
 - Larry Zhang Student

Collaborators

- Beihang Univ. (BUAA) in Beijing, China
 - Shisheng Zhang (Professor) theoretical nuclear physics, cross section predictions
 - B. Shao, S. Y. Zhong, Sizhe Xu (BUAA grad students) theoretical nuclear physics
- SungKyunKwon Univ. (SKKU) in Korea
 - **Kyungyuk Chae** (Professor) reaction assessments for astrophysics
 - C. Kim, K.U. Nguyen (SKKU grad students) reaction assessments for astrophysics
- Emory Univ. (Atlanta)
 - **Eric Zhang** (undergrad) uncertainty quantification in nuclear astrophysics

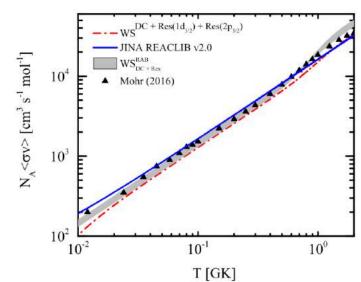
Reaction Assessments

THE EUROPEAN
PHYSICAL JOURNAL A

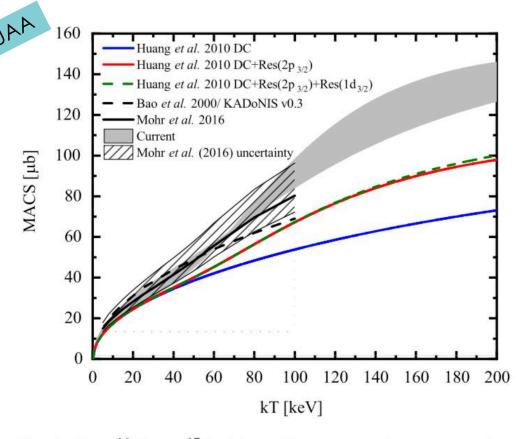
Regular Article -Theoretical Physics

https://doi.org/10.1140/epja/s10050-021-00434-7

(2021) 57:114


Neutron capture on ¹⁶O within the framework of RMF + ACCC + BCS for astrophysical simulations

Shisheng Zhang^{1,a}, Sizhe Xu¹, Meng He¹, Michael S. Smith^{2,b}


School of Physics, Beihang University, Beijing 100191, China

2 Phy

Eur. Phys. J. A

Fig. 3 The $^{16}\text{O}(n, \gamma)^{17}\text{O}$ Maxwellian averaged cross sections (MACS) from four effective interactions using the RAB approach are shown spanning the gray region. Also shown are the MACS from the KaDoNIS database of neutron capture reactions [51], from Mohr et al. [4] with uncertainty, and the direct capture only from Huang et al. [27] along with the resonant contributions added in for the $2p_{3/2}$

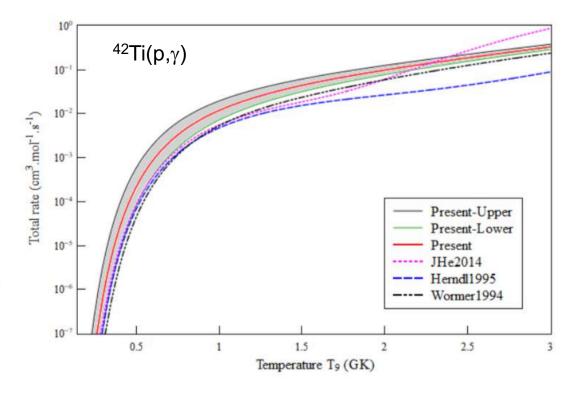
Reaction Assessments

Assessment of the reaction rates of $^{42}{\rm Ti}({\rm p},\gamma)^{43}{\rm V}$ in type I X-ray burst

N. K. UYEN, N. N. DUY and K. Y. CHAE*

Department of Physics, Sungkyunkwan University, Suwon 16419, South Korea

М. S. SMITH


Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

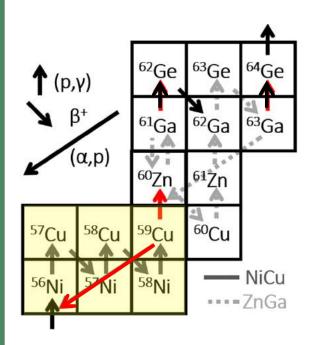
L. Xayavong

Department of Physics, National University of Laos, 7322, Dongdok, Vientiane, Lao PDR

Table 2. The presently parameters for the $^{42}\mathrm{Ti}(\gamma, p)^{43}\mathrm{V}$ resonant reaction rates. The adopted proton separation energy $S_p = 100 \pm 43$ keV regarding to the AME16 relied on Ref. [16].

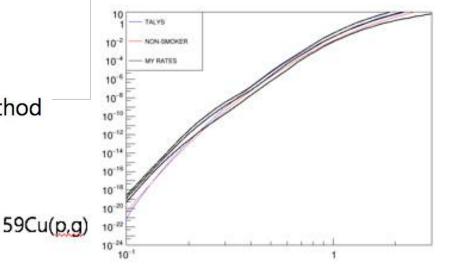
E_x (MeV	$E_i \text{ (MeV)}$	τ (ps)	J^{π}	l	C^2S_p	Γ_{γ} (eV)	$\Gamma_p \ ({ m eV})$	$\omega\gamma~({\rm MeV})$
0.436	0.336	22.00	$(\frac{5}{2})^{-}$	3	0.150	2.99×10^{-05}	1.73×10^{-08}	5.18×10^{-14}
0.537	0.437	117.00	$(\frac{3}{2})^{-}$	1	0.046	5.63×10^{-06}	1.09×10^{-04}	1.07×10^{-11}
1.014	0.914	9.14	$(\frac{3}{2})^{-}$	1	0.002	7.20×10^{-05}	6.07×10^{-02}	1.44×10^{-10}
1.844	1.744	0.61	$(\frac{3}{2})^{-}$	1	0.905	1.09×10^{-03}	$6.74\times10^{+03}$	2.17×10^{-09}

Assessment of the ⁴²Ti(p,γ) rate for X-ray burst nucleosynthesis studies


Reaction Assessments

with SKKU

Nuclear Evaluation on 60Zn:

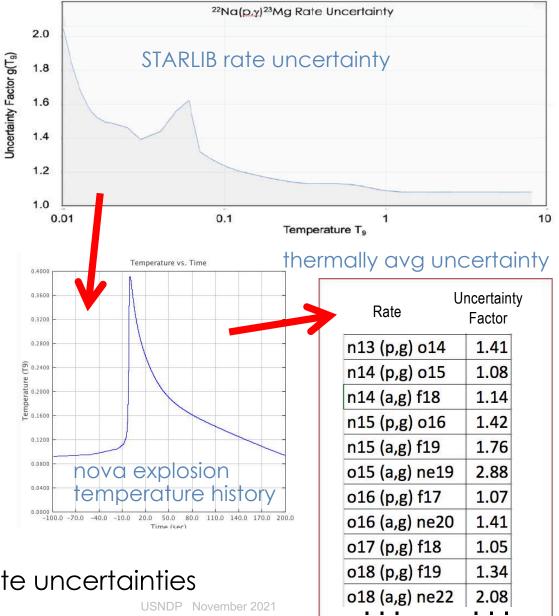

59Cu(p,g) vs 59Cu(p,a) reaction rates based on Monte Carlo method


Chanhee Kim, K.Y. Chae et al. SKKU M.S. Smith, ORNL

Level energies

Weighted Avg	Uncertain		
5.183097	0.06		
5.2918	8.94E-04		
5.336	0.004		
5.369	0.002		
5.501858	2.00E-03		
5.729	0.003		
5.954825	0.07		
6.344086	0.07		
6.637687	0.002984		
6.920409	0.048507		
7.112626	0.07		
7.31784058	0.05		
7.3704	0.003947		
7.469003	0.003999		
7.641622	0.07		
7.940262	0.05		

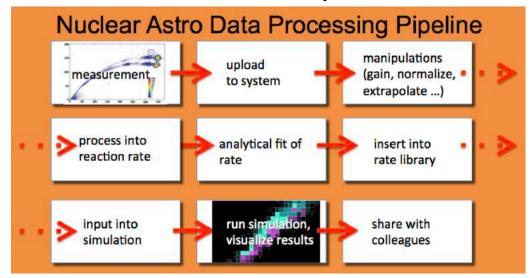
• Assessment of the 59 Cu(p, γ) and 59 Cu(p, α) rates for X-ray bursts

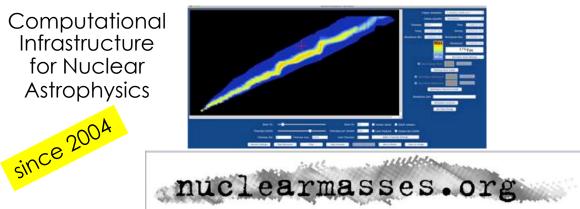


Nuclear Astrophysics Data

STARLIB rates

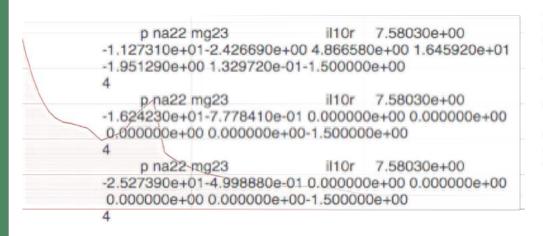
25Al(p,q)26Si 14C(a,g)180 25Mg(p,g)26Al 14C(p,q)15N 26Al(p,q)27Si 14N(a,q)18F 26Mg(p,g)27Al 15N(a,q)19F 26Si(p,g)27P 150(a,q)19Ne 27Al(p,a)24Mg 160(a,g)20Ne 27Al(p,q)28Si 160(p,g)17F 27P(p,q)28S 17F(p,g)18Ne 27Si(p,q)28P 170(p,a)14N 28Si(p,q)29P 170(p,q)18F 29P(p,g)30S 18F(p,a)150 29Si(p,g)30P 18F(p,a)150 30S(p,g)31Cl 18F(p,q)19Ne 30Si(p,g)31P 180(a,q)22Ne 31Cl(p,g)32Ar 180(p,a)15N

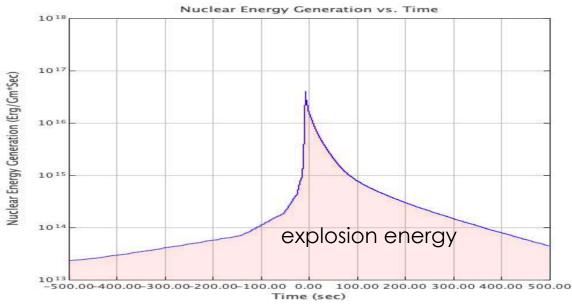




- improving thermonuclear reactions
 - processing & thermally averaging rate uncertainties

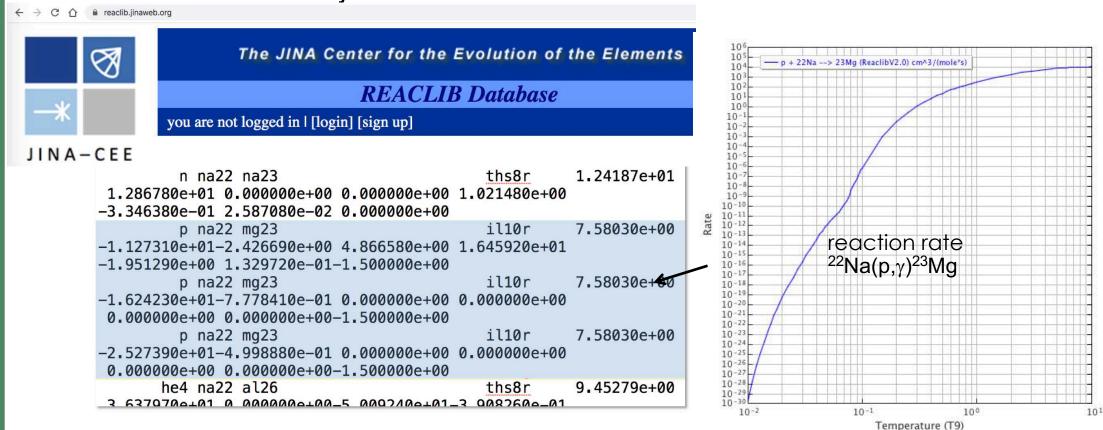
Online Software Systems



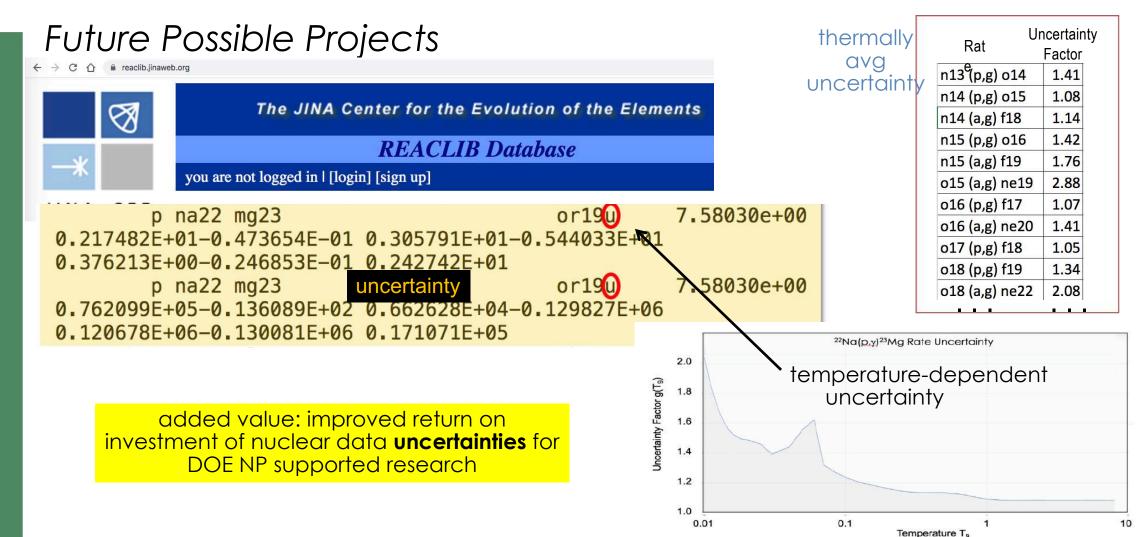


- unique set of online software systems that serve the community carrying out DOE NP-supported research programs and endorsed by NSAC LRP
- systems used by researchers in over 180 institutions in 42 countries
- systems improve return on investment of nuclear data for research projects
- many ideas for expanding and improving these services
- budget crisis in FY21 prevented any work on these important systems

Future Possible Projects



- add uncertainties to REACLIB thermonuclear rate library
- update REACLIB content!
- develop benchmark simulations and integral parameters (e.g., k_{eff} equivalents) to help validate nuclear astrophysics rate libraries
- explore processing (some) TALYS cross sections into REACLIB rate format



Future Possible Projects

- REACLIB thermonuclear rate library
 - premier library of 160K thermonuclear rates for astrophysics studies

- REACLIB thermonuclear rate library
 - research community needs rate uncertainties for UQ studies
 - needs updated rates to keep the data base current and relevant!

Synergistic Activities - WANDA2021

Workshop for Applied Nuclear Data Activities (WANDA 2021)

Session Three: Advanced Computing for Nuclear Data

State of computational nuclear data and future prospects

Speaker: Nicolas Schunck (LLNL)

Higher-fidelity simulations with HPC

- Predictive theory for light-ion reactions, Kostas Kravvaris (LLNL)
- HPC for fission modeling in support of nuclear data, lonel Stetcu (LANL)
- Propagation of nuclear model uncertainties in science applications, Trevor Sprouse (LANL)
- Perspectives from the ExaSMR Project: Nuclear Data Needs and Opportunities, Paul Romano (ANL)

Speakers: Ionel Stetcu, Kostas Kravvaris, Paul Romano, Trevor Sprouse

AI/ML as Enabling Technologies

- Containerization and microservices for nuclear data, Georg Schnabel (IAEA)
- Selected topics from physics aware ML, Mateusz Ploskon (LBNL)
- Natural Language Processing for Nuclear Science Scholarship, Walid Younes (LBNL Const
- Surrogate Modeling for Fission Cross Sections and Criticality Studies using Artificial Neu Christian Brazell (TAMU)

Speakers: Christian Brazell, Georg Schnabel, Mateusz Ploskon, Walid Younes

Quantum Computing

Speaker: Kyle Wendt

- Advanced Computing Session Organizer
 - Nicolas Schunck, MSS, Bethany Goldblum, Matthew Mumpower, Ben Loer, David Brown

Synergistic Activities - WANDA2021

Current Nuclear Data Needs for Applications

Karolina Kolos¹, Vladimir Sobes², Ramona Vogt^{1,3}, Catherine E. Romano⁴, Michael S. Smith⁵, Lee A. Bernstein^{6,7} David A. Brown⁸, Mary T. Burkey⁹, Yaron Danon¹⁰, Mohamed A. Elsawi¹¹, Bethany L. Goldblum^{6,7}, Lawrence H. Heilbronn², Susan L. Hogle¹², Jesson Hutchinson¹³, Ben Loer¹⁴, Elizabeth A. McCutchan⁷, Matthew R. Mumpower¹⁵, Ellen M. O'Brien¹⁶, Catherine Percher¹⁷, Patrick N. Peplowski¹⁸, Jennifer J. Ressler⁹, Nicolas Schunck¹, Nicholas W. Thompson¹³, Andrew S. Voyles^{6,7}, William Wieselquist¹⁹, Michael Zerkle²⁰

- [317] R. Arcilla et al., Continuous Integration and Deployment Software to Automate Nuclear Data Verification and Validation, Nucl. Data Sheets 118, 422 (2014).
- [318] D. Neudecker et al., Enhancing Nuclear Data Validation Analysis by Using Machine Learning, Nucl. Data Sheets 167, pp. 36-60 (2020).
- [319] B. Whewell et al., Evaluating ²³⁹Pu(n, f) Cross Sections via Machine Learning using Experimental Data, Covariances and Measurement Features, Nucl. Instr. Meth. A 978,164305 (2020).

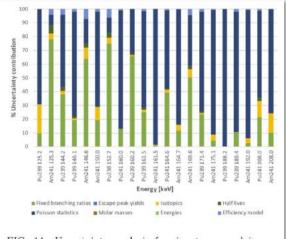


FIG. 14: Uncertainty analysis for signatures used in nondestructive assay of MSRs [261].

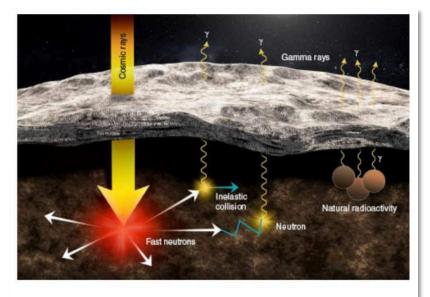
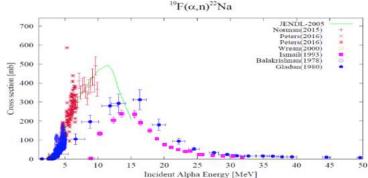


FIG. 9: Schematic of cosmic ray interactions with planetary surfaces. Rendering by Veronica Chen [231].

WANDA 2021 Proceedings Editor

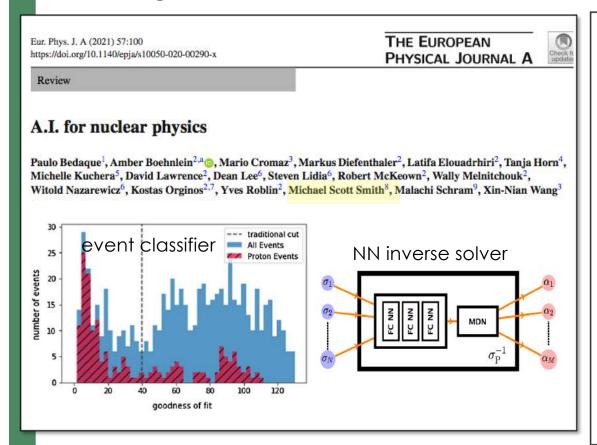
- Ramona Vogt (Chief Editor), MSS, Kay Kolos, Vlad Sobes, Cathy Romano
- to be published in Phys. Rev. R
- 26 authors, 8 sections, 41 pages, 319 references, 14 figures



Synergistic Activities – Non-Proliferation

(α,n) Nuclear Data Scoping Study

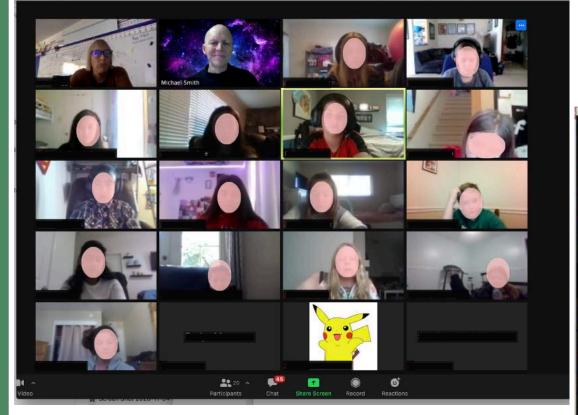
Isotope	Current state of data	Reaction threshold	Applications Highest priority		Catherine Romano		
¹³ C	Recent data (4–6.5 MeV) to be published, new evaluation needed.	450–800 keV	NDA/ER, safeguards, advanced reactors, background simulations Low-energy me Dame measuren data are being e are resolved.		David Drown		
¹⁷ O	Recent evaluation available for next ENDF release— discrepancies in neutron spectrum remain	800 keV-1.2 MeV	Safeguards, reactors, NDA/ER, background simulations	Recent Notre Da to 7 MeV will pr spectrum. Updat	Les Nakae		
¹⁸ O	Recent evaluation available for next ENDF release— discrepancies in neutron spectrum remain	850 keV-1.4 MeV	Safeguards, reactors, NDA/ER, Background simulations	Notre Dame mea 8 MeV will prov spectrum. Updat			
¹⁹ F	No evaluation of recent data— benchmark and neutron spectrum data needed	2.3 MeV	Safeguards UF ₆ , FLiBe reactors, fuel cycle and waste management applications		in, angular distributions, neutron energy spectra, ick target integral measurements are needed to		
	5.2		High priority	216			
⁷ Li	Adjusted evaluation based on JENDL data available for next ENDF release, large discrepancies in data	3–4 MeV	FLiBe reactors, NDA/ER, safeguards Important for characterization of actinide- Li neutron sources	reaction channels	New experiments with ability to resolve excitation states and reaction channels and new evaluations are needed to accurately model neutron sources.		
⁹ Be	Neutron spectrum has been validated and new evaluation available for next ENDF	200 KeV	FLiBe reactors, NDA/ER, safeguards Important for characterization of actinide-	multiple breakup	uired specifically above 5 MeV to address the channels in the cross section and to collect and angular distributions. Evaluations based on		



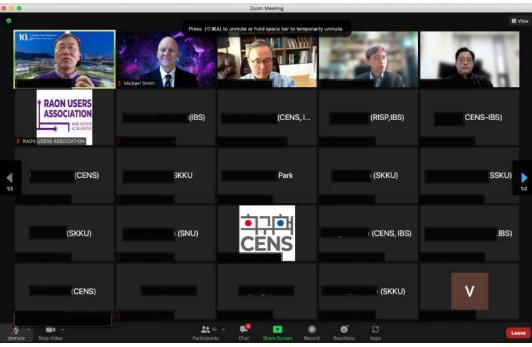
- Non-Proliferation efforts for NNSA
 - co-authored scoping study that made recommendations for a multi-year program of evaluations & experiments of (alpha,n) for applications

Synergistic Activities – Machine Learning

Machine learning and artificial intelligence in nuclear physics


Editors

Amber Boehnlein¹, Markus Diefenthaler¹, Morten Hjorth-Jensen⁴ Tanja Horn³, Michelle Kuchera³, Dean Lee⁴, Witold Nazarewicz⁴, Kostas Orginos^{1,5}, Alan Poon⁷, Michael S. Smith⁶, Xin-Nian Wang⁷, Long-Gang Pang⁸ Veronique Zieglerⁿ,


- ¹Thomas Jefferson National Accelerator Facility
- ²Catholic University
- ³Davidson College
- ⁴Michigan State University
- ⁵College of William & Mary
- ⁶Oak Ridge National Laboratory
- ⁷Lawrence Berkeley National Laboratory
- ⁸Central China Normal University
- co-author of two articles on ML in NP
 - EPJA article (2021) and RMP article (to be published in 2022)
 - wrote the "ML in nuclear data" sections

Synergistic Activities – Outreach

- Remote outreach presentations on nuclear astrophysics & nuclear data given to middle schools, high schools, undergrads, grads, postdocs ... in USA, China, Korea
- Chair of APS Committee to Inform the Public (CIP) USNDP November 2021

