Just a little NJOY update

W. Haeck, N. Gibson, M. Staley, C. Josey, A. C. Kahler, J. L. Conlin

November 15-19, 2021
Agenda

1. Getting NJOY2016 ready for ENDF/B-VIII.1
 1. Overview of features to be supported
 2. ACE format changes
 3. NJOY2016.66

2. Modernisation updates
 1. ENDFtk
 2. ACEtk
 3. GNDStk
Making a new ENDF/B library …

• Every new ENDF/B generation changes formats and adds new data

• The future library: ENDF/B-VIII.1 (somewhere in 2024)
 − Mixed mode thermal scattering (coherent and incoherent elastic scattering)
 − Background R-matrix elements for resonance parameters in MF2 MT151
 − Improved photonuclear data

• If these changes impact the ACE format, MCNP needs to be updated too
 − These changes are prioritised due to the involvement of MCNP
 − Changes are made in collaboration with the MCNP development team

• MCNP6.3 will have experimental support for these new ENDF/B-VIII.1 features
Thermal scattering

• Nuclear data evaluations identify multiple categories of thermal scattering:
 − Coherent elastic: important in crystalline solids (graphite, metals, etc)
 − Incoherent elastic: important in solids with hydrogen (polyethylene, ZrH, etc.)
 − Coherent and incoherent inelastic: all solid and liquid materials (hydrogen in water)

• Prior to ENDF/B-VIII.1: either coherent or incoherent elastic scattering
 − Coherent and incoherent are not exclusive and neglecting one is an approximation
 − ENDF/B-VIII.1 will introduce mixed mode elastic scattering

• This feature is reflected in the ACE format itself
 − Only one elastic thermal scattering data block, which is either coherent or incoherent
 − We needed to add an optional second block when both are given
The original thermal scattering format in ACE

- The thermal scattering format is relatively simple
 - Two main blocks: one for inelastic and one for elastic
 - The elastic block is either coherent (IDPNC=4) or incoherent (IDPNC=3)
 - Formatting parameters given in the NXS array

Parameters

<table>
<thead>
<tr>
<th>Length</th>
<th>IDPNI</th>
<th>NIL</th>
<th>NIEB</th>
<th>IDPNC</th>
<th>NCL</th>
<th>IFENG</th>
</tr>
</thead>
</table>

- **Inelastic**
 - ITIE – Energies
 - ITIX – Cross sections
 - ITXE – Angular data

- **Elastic**
 - (coherent or incoherent)
 - ITCE – Energies
 - ITCX – Cross sections
 - ITCA – Angular data

-1 for coherent elastic

Not present for coherent elastic
The original thermal scattering format in ACE

- The old format is still VALID
 - When mixed mode is used, there will be an additional elastic block (IDPNC=5)
 - Coherent elastic is always given first, incoherent elastic is given after that
 - An additional formatting parameter: NCLI for the second elastic block only
 - NCL will always be -1 for IDPNC=5

<table>
<thead>
<tr>
<th>Length</th>
<th>IDPNI</th>
<th>NIL</th>
<th>NIEB</th>
<th>IDPNC</th>
<th>NCL = -1</th>
<th>IFENG</th>
<th>NCLI</th>
</tr>
</thead>
</table>

- Inelastic
 - ITIE – Energies
 - ITIX – Cross sections
 - ITXE – Angular data

- Coherent elastic
 - ITCE – Energies
 - ITCX – Cross sections
 - ITCA – Angular data

- Incoherent elastic
 - ITCEI – Energies
 - ITCXI – Cross sections
 - ITCAI – Angular data
Example: H-H2O - inelastic only

H IN H2O @400K FROM ENDF/B-VIII.0 - CHECK TAPE 1
Thermal cross sections

Cross section (barns) vs. Energy (MeV)

- inelastic
Example: Al27 metal – coherent elastic and inelastic
Example: Zr-ZrH – incoherent elastic and inelastic

![Graph showing thermal cross sections for Zr in ZrH at 400K from ENDF/B-VIII.0 - Check Tape 1. The graph displays cross sections in barns as a function of energy in MeV. The graph includes lines for inelastic, incoherent elastic, and total cross sections.](image-url)
Example: D-7LiD – mixed mode elastic and inelastic
Photonuclear data

• Traditional photonuclear data
 – Secondary photon distributions traditionally given using the LAW=1 LANG=1 format
 – Traditionally using a single Legendre coefficient (i.e. isotropic distribution)
 – This assumption was hardcoded in NJOY2016’s ACER module

• And then the IAEA-2019 library was released (August 2020)
 – Secondary distributions are using anisotropic Legendre expansion

• NJOY2016 had to be updated
 – A temporary fix was introduced to keep the distributions isotropic
 – A permanent fix now translates the distributions properly into ACE LAW=61
 – Only MCNP6.3 is capable of using these new photonuclear files
Example: Mono-energetic photon beam on a Pu239 disk

- Neutron spectrum tallied outside the disk in a 0.1 mm sphere
 - Using ENDF/B-VIII.0 photonuclear data
Example: Mono-energetic photon beam on a Pu239 disk

- Comparing ENDF/B-VIII.0 with IAEA-2019
 - Only MCNP6.3 can run the IAEA-2019 ACE files
This is a big update, the major changes are:

- The photonuclear data format changes (ACE LAW 44 to 61)
- Mixed mode elastic scattering in thermal scattering laws

ACER

- Photonuclear ACE format update (including plots and output file)
- Formatting/processing the thermal scattering data (including plots and output file)
- The XSS array and its size is now set in the common acecm module
- Added locator checking and unknown law checking when writing out ACE files
 - NJOY2016 will now error out when locators are inconsistent or when an unknown law is used
 - Previously only for incident neutron and charged particle CE files
 - Extended to photonuclear and thermal scattering files
- Some changes in the input file for mixed mode elastic (card 9: ielas=2)
- Charged particle updates

When this happens, there is an issue that can cause MCNP problems. These things previously went undetected.
NJOY2016.66

• MODER
 - MF7 and MF28 update

• THERMR
 - Most of the thermal scattering processing happens here
 - Between 1 and 3 thermal scattering MT numbers are added to the PENDF file

• ERROR
 - Fixed a crash caused by MF34 covariances using multiple subsections
 - Each subsection is now processed but we are still working on outputting the results

• Additional non-regression tests
 - There are now 71 cases in the NJOY2016 test suite
 - Tests 67-70 provide tests for all combinations of thermal scattering data
What does the future bring?

• NJOY2016 will be maintained for the foreseeable future
 – NJOY2016 is essentially the production code at LANL
 – New formats for ENDF/B-VIII.1 will be supported:
 ▪ Thermal scattering: mixed coherent and incoherent elastic scattering
 ▪ External R-matrix elements used in some new resonance evaluations

• NJOY21: shift from a module based to a component based modernisation
 – Modernised modules are built from components
 ▪ Components provide formats (ENDF, ACE) or processing operations (resonance reconstruction)
 ▪ Components can be developed and deployed faster than modules
 ▪ Components provide features that modules do not provide
 – Using a C++ and Python API at the same time
Processing components are format agnostic

• In the beginning there was only ENDF …
 – As a result, NJOY2016 is very closely linked to ENDF
 – Introducing the new GNDS format in NJOY2016 is practically impossible

• NJOY21 processing components MUST be format agnostic
 – Internal data structures that reflect generic data can be built from scratch
 – Build these data structures using ENDF or GNDS evaluated data, or other user data
NJOY21 formatting components

<table>
<thead>
<tr>
<th>NJOY21 format components</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENDFtk</td>
<td>Evaluated nuclear data format (the legacy one)</td>
</tr>
<tr>
<td>GNDStk</td>
<td>Evaluated nuclear data format (the new one)</td>
</tr>
<tr>
<td>ACEtk</td>
<td>Application library format for MCNP</td>
</tr>
</tbody>
</table>

- **ENDFtk**: almost everything in the ENDF format, including internal NJOY sections
 - Some of the covariance sections are still missing
 - GENDF support (for GROUPR and ERRORR) will be added soon
 - https://github.com/njoy/ENDFtk

- **ACEtk and GNDStk**: will be our focus for FY22
 - https://github.com/njoy/ACEtk
 - https://github.com/njoy/GNDStk
Current status of ACEtk

Incident neutron and charged particle continuous energy files

<table>
<thead>
<tr>
<th>Block</th>
<th>Description</th>
<th>C++</th>
<th>Python</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESZ</td>
<td>Energy grid and principal cross sections (total, elastic, absorption, heating)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>NU</td>
<td>Average number of neutrons per fission</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MTR, MTRP, MTRH</td>
<td>Available reactions (excluding elastic)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LQR</td>
<td>Reaction Q values</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>TYR, TYRH</td>
<td>Reference frame and multiplicity</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SIG</td>
<td>Cross section data</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SIGP, SIGH</td>
<td>Particle production cross sections</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>AND, ANDP, ANDH</td>
<td>Angular distribution data for secondary particles (no correlated angular)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DLW, DLWP, DLWH</td>
<td>Secondary particle energy distribution data (includes correlated angular)</td>
<td>Yes/No</td>
<td>Yes/No</td>
</tr>
<tr>
<td>GPD, HPD, YP, YH</td>
<td>Total secondary particle production cross section and multiplicities</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PTYPE, NTRO, IXS</td>
<td>Auxiliary arrays for secondary particle production</td>
<td>Yes/No</td>
<td>Yes/No</td>
</tr>
<tr>
<td>UNR</td>
<td>Unresolved resonance probability tables</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Current status of GNDStk

• The GNDStk development approach
 – A tree/node based core interface that is GNDS standard agnostic
 – A GNDS standard interface layer
 ▪ An autogenerated interface that follows the GNDS standard specifications
 ▪ Both a C++ and python interface is generated
 ▪ Allowing for customization to produce a slimmed down and abstracted interface

• GNDStk v0.1.0 is a prototype using a slimmed down GNDS 1.9 standard

• We’re in the process of implementing the GNDS 2.0 standard
 – The autogenerated interface should be ready by now (at least I hope it is)
 – Customisation will begin for resonance parameters and cross section data
import ENDFtk, ACEtk
import matplotlib.pyplot as plot

open an Pu239 ENDF file and extract the total cross section
tape = ENDFtk.tree.Tape.from_file('U235.endf')
section = tape.materials.front().file(3).section(1).parse()
energies1 = section.energies
total = section.cross_sections

open the associated Pu239 ACE file and extract the total cross section
ace = ACEtk.ContinuousEnergyTable.from_file('U235.ace')
index = ace.MTR.index(18)
energies2 = [energy * 1e+6 for energy in ace.ESZ.energies]
fission = ace.SIG.cross_sections(index)

plot the cross sections
plot.plot(energies1, total)
plot.plot(energies2, fission)
plot.xscale('log')
plot.yscale('log')
plot.xlabel('Incident neutron energy [eV]')
plot.ylabel('Cross section [barn]')
plot.show()
A first application: plotting
Conclusions

• NJOY2016 will be maintained for the foreseeable future
 – New formats for ENDF/B-VIII.1 will be supported
 – NJOY2016.66 already implements a few of these
 – Experimental support for the ACE format changes in MCNP6.3

• NJOY21 modernisation
 – Component based versus module based
 – C++ and python interfaces
 – Currently focus is on format components: ENDFtk, ACEtk, GNDStk