
LLNL-PRES-829231
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

FUDGE: LLNL nuclear data infrastructure
Presented at CSEWG

Bret Beck

Nov 2021

2
LLNL-PRES-xxxxxx

§ For Updating Data and Generating Evaluations (FUDGE)

§ Use to read/write, plot, modify and process GNDS data
— Processing for Monte Carlo and multi-group transport.

§ User interface is python 3.6+.
— Computationally intensive stuff written in C and C++.
• E.g., heating cross sections, multi-grouping distributions.
• Users do not interact directly with the C and C++ codes, the python interface

handles that.

§ FUDGE is like a toolkit but we are writing many scripts that are
included in the bin directory

§ FUDGE can convert ENDF-6 (and LLNL ENDL) files into GNDS,
and GNDS to ENDF-6.

Overview of FUDGE

3
LLNL-PRES-xxxxxx

§ FUDGE command to process a GNDS file for deterministic and
Monte Carlo transport at 3 temperatures (MeV/k)

§ Output (i.e., processed) file contains
— evaluation data
— Reconstructed cross sections (if needed)
— Coulomb + nuclear elastic µ cutoff (if needed)
— average product data (needed for energy deposition - KERMA)
— pdf/cdf data for distributions (e.g., P(E’|E))
— heated cross sections (at 3 temperatures in example above)
— Common grid heated cross section for Monte Carlo (ditto)
— multi-group data (ditto)
— TNSL data, if present, are processed

FUDGE processing example for transport codes

bin/processProtare.py -mc -mg -t 2.58522e-08 -t 1e-07 -t 1e-4 gnds.file.xml

URR processing is done separately, still needs to be integrate in.

4
LLNL-PRES-xxxxxx

§ GNDS 2.0 has not been officially released but it is most likely
complete except for a few minor requests.

§ FUDGE is up-to-date to handle GNDS 2.0
— Except for TNSL (see Caleb) and that’s because the specification are still

being tweaked.

§ Internally, FUDGE looks a lot like GNDS 2.0
— I will show examples later

§ Since GNDS 2.0 is not finalized, FUDGE writes the format as
‘2.0.LLNL_4’.
— We have generated ‘2.0.LLNL_4’ file for ENDF/B-VIII.0 that the OECD/NEA

will make available (see Michael Fleming)

GNDS 2.0 support in FUDGE

5
LLNL-PRES-xxxxxx

§ For example, in GNDS 2.0 the top node “reactionSuite” has the
following child nodes:

§ All of these are automatically created by the “reactionSuite”
constructor (i.e., “__init__”) except for the “resonances” node
and I will try to fix that.

§ All child nodes but “PoPs”, “resonances”, “sums” and
“resonances” have an ”add” method to add an object.

§ Adding an instance to reactions example
— reactionSuite.reactions.add(reaction)

FUDGE creates many “nodes” automatically

externalFiles styles PoPs
resonances reactions orphanProducts
sums productions incompleteReactions
fissionComponents applicationData

6
LLNL-PRES-xxxxxx

§ The documentation node in GNDS 2.0 allows one to record a lot
of information (thanks mainly to Dave Brown).

§ Child nodes are:
authors, contributors, collaborations, dates, copyright,
acknowledgements, keywords, relatedItems, title,
abstract, body, computerCodes, experimentalDataSets,
bibliography and endfCompatible.

§ All child nodes are automatically created by the documentation
constructor

§ Next slide show how to populate title and abstract nodes.

GNDS 2.0 documentation node support in FUDGE

7
LLNL-PRES-xxxxxx

Documentation example

from xData.Documentation import documentation

doc = documentation.Documentation(doi="12.23134/8821.322")

doc.title.body = "This is the title."

doc.abstract.body = "Pythagoras' theorem is $a^2 + b^2 = c^2$."
doc.abstract.markup = "latex"

print(doc.toXML())

<documentation doi="12.23134/8821.322">
<title><![CDATA[This is the title.]]></title>
<abstract markup="latex">

<![CDATA[Pythagoras's theorem is $a^2 + b^2 = c^2$.]]></abstract></documentation>

Note, only nodes that have been populated are written to a file.

8
LLNL-PRES-xxxxxx

GNDS 2.0 map file supported in FUDGE and GIDI+

<map library="Example" format="2.0">

<protare projectile="n" target="O16" evaluation="fromJoe"
path="fromJoe/n-008_O_016.xml"/>

<protare projectile="n" target="U235" evaluation="fromJoe"
path="fromJoe/n-092_U_235.xml"/>

<protare projectile="n" target="U235" evaluation="Ian"
path="fromIan/n-092_U_235.xml"/>

<protare projectile="n" target="U238" evaluation="Ian"
path="fromIan/n-092_U_238.xml"/>

<TNSL projectile="n" target="OinBeO" evaluation="ENDF/B-8.0"
path="tsl/tsl-OinBeO.xml">
standardTarget="O16" standardEvaluation="ENDF/B-8.0"/>

<import production.map></map>

A map file supports nesting which is used by EMU.

9
LLNL-PRES-xxxxxx

§ Multi-group boundaries format uses GNDS <group> node to store the label
and boundaries for a group.

/path/to/FUDGE/bin/addMultigroup.py -h

§ Flux stored as f(T,E,mu) using a GNDS 3d function.

/path/to/FUDGE/bin/addFlux.py -h

LLNL also has multi-group boundaries and flux files

<group label="LLNL_gid_23">
<grid index="0" label="energy" unit="MeV" style="boundaries">

<values>2.0908e-6 2.0908e-4 1.8817e-3 .010245 .07002 0.27097 .7527 15.754</values>
</grid></group>

<XYs3d label="LLNL_fid_1">
<axes>
<axis index="3" label="temperature" unit="MeV/k"/>
<axis index="2" label="energy_in" unit="MeV"/>
<axis index="1" label="mu" unit=""/>
<axis index="0" label="flux" unit="1/s"/></axes>

<XYs2d outerDomainValue="0.0">
<Legendre outerDomainValue="0.0"><values>85</values></Legendre>
<Legendre outerDomainValue="21.0"><values>85</values></Legendre></XYs2d></XYs3d>

10
LLNL-PRES-xxxxxx

Plotting example for ‘n + U230’ via pyQt5 and
matplotlib

from fudge import map as mapModule

map = mapModule.Map.readXML('ENDF-VIII.0/all.map')
protare = map.findAllOf('n', 'U230')[0].protare()

crossSections = []
for reaction in protare.reactions:
crossSection = reaction.crossSection.toPointwiseLinear(lowerEps=1e-7)
crossSection.plotLegendKey = str(reaction)
crossSections.append(crossSection)

crossSection.multiPlot(crossSections, rangeMin = 1e-5, xylog = 3,
title='n + U230', xLabel='Neutron energy [eV]', yLabel='Cross section [b]')

Plot is interactive

11
LLNL-PRES-xxxxxx

Check for missing gamma data in ENDF-VIII.0

from fudge import map as mapModule
from fudge.productData.distributions import unspecified

map = mapModule.Map.readXML('ENDF-VIII.0/all.map')

neutrons = map.findAllOf('n') # First argument is projectile

for mapProtare in neutrons:
protare = mapProtare.protare()
for reaction in protare.reactions:

for product in reaction.outputChannel.products:
if product.id == 'photon':

distribution = product.distribution[0]
if isinstance(distribution, unspecified.form):

print(product.toXLink())

This example ignores nesting of products, but the code I used did include nesting.

12
LLNL-PRES-xxxxxx

§ We are developing scripts to make it easier to examine and
process GNDS files.

§ Some examples include:
— processProtare.py: Processes for Monte Carlo and multi-group transport
— peek.py: Prints each reaction and brief information about

each reaction's products.
— temperatures.py: List all temperature data in a GNDS file
— checkGNDS.py: Check the physics in a GNDS file (e.g., positive cross

sections, normalize distributions)
— diffGNDS.py: Does a partial diff of two GNDS files
— buildMapFile.py: Creates a map file from a list of GNDS files
— checkMap.py: Check a map file and all it reference

FUDGE scripts

13
LLNL-PRES-xxxxxx

§ Improving URR probability table building
— We are working with BNL on this (Dave Brown and Matteo Vorabbi)
— Currently, not automatic in FUDGE

§ Adding a multi-group sums node to reduce load time for
deterministic transport codes
— Initially, this will go under the “applicationData” node

§ Additional ACE support
— Currently supports GNDS to ACE for neutrons transport including TNSL

§ Update codes for GPUs where possible and beneficial (e.g.,
heating cross sections, calculating multi-group transfer
matrices)

Some of what are we working on in FUDGE

14
LLNL-PRES-xxxxxx

§ We have been doing some needed refactoring of FUDGE

§ Latest release includes most of the refactoring but still have
more to do

§ Hope to complete refactoring by January 2022 and do another
release

§ That said, anyone interested in FUDGE should get the latest
release and play with it since a few small changes should be
needed to update scripts for the January release

FUDGE refactoring

15
LLNL-PRES-xxxxxx

§ Caleb Mattoon will be talking on TNSL data and FUDGE
— Talk Wednesday at 10:00 am EST
— “TNSL Implementation and Testing in FUDGE”

§ Kyle Wendt will be talking on EMU
— Talk today at 17:35 EST
— “An Uncertainty Quantification Toolkit for GNDS Formatted Libraries”
— Evaluated Means and Uncertainties (EMU)
— Generates realizations from mean and covariance data
— Uses FUDGE to read/write and modify data.
— Also generates processed files

Other talks related to FUDGE

16
LLNL-PRES-xxxxxx

§ A collection of packages for transport codes to read GNDS files
— Mainly written in C++

§ GIDI+ consists of the following packages:
— PoPI: Property of Particles Interface
• Reads PoPs data

— GIDI: General Interaction Data Interface
• Read in a GNDS reactionSuite file
• Supports map files
• Includes support for multi-group data including collapsing
• Currently, only reads GNDS data needed by transport codes

— MCGIDI: Monte Carlo GIDI
• For use in Monte Carlo transport codes
• Extracts needed data from a GIDI instance
• Has cross section, energy deposition, etc. lookup functions by temperature and

energy
• Has reaction, distribution sampling functions.

— plus other packages rarely called directly by transport codes

GIDI+

17
LLNL-PRES-xxxxxx

§ Decreasing load times
— ‘lazy reading’
— Summed data for deterministic transport codes

§ Direct sampling of elastic TNSL data
— from S(E,T) for coherent elastic
— from DebyeWaller - W’(T) – for incoherent elastic

§ Updating the version in GEANT4
— Current version is many years old and does not read GNDS
— We have funding to work on improving diagnostic gammas
• Dave Brown and BNL leading effort

§ Add physical unit support
— Already in FUDGE

What are we working on in GIDI+

18
LLNL-PRES-xxxxxx

§ We are releasing all codes under https://github.com/LLNL
— FUDGE
• https://github.com/LLNL/fudge
• Version 5.0
• Python 3.6+
• Pip install – instructions on github site
• BSD license (will switch to MIT license)
• GNDS format is 2.0.LLNL_4 which should be the same as 2.0 if there are no

further changes to GNDS 2.0 specifications (except for TNSL data)
— GIDI+
• https://github.com/LLNL/gidiplus
• Version 3.22.??
• C++11
• GNDS format is 2.0.LLNL_4 (and 2.0?)

§ Releasing all codes under MIT license, except currently FUDGE

Code releases

https://github.com/LLNL

19
LLNL-PRES-xxxxxx

§ Latest releases of FUDGE and GIDI+ will be available in a few
days.

§ Plan to do another release around 1 Jan. 2022.

§ If you find any issues with FUDGE or GIDI+ please let us know

§ We plan to also release EMU (see Kyle Wendt)

§ We need you to look at the latest 2.0* including
— The specification document
— the NEA files
— What FUDGE is doing (i.e., it is doing something wrong)

Final comment

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States government or Lawrence Livermore National
Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States government or Lawrence Livermore National Security, LLC, and shall not be
used for advertising or product endorsement purposes.

21
LLNL-PRES-xxxxxx

§ PoPI
— Properties of Particle Interface
— C++ API to read and allow access to GNDS PoPs data

§ GIDI
— General Interaction Data Interface
— C++ API to read and access to GNDS data
— Developed to give access for transport codes
— Follows outline of GNDS
— Has Map and Protare classes

§ MCGIDI
— Monte Carlo General Interaction Data Interface
— C++ API for use in Monte Carlo transport codes
— Extracts data from a GIDI::Protare
— Stores data in more suitable way for Monte Carlo transport
— Cross section look up by temperature and projectile energy for host code
— Samples a reaction for a protare
— Samples outgoing particle data for a reaction

GIDI+ main user packages

22
LLNL-PRES-xxxxxx

§ To use GIDI and MCGIDI requires additional packages. GIDI,
MCGIDI and these additional packages are dubbed GIDI+.
— pugixml-1.8
• Third party XML parser
• Written in C++

— statusMessageReporting
• Handles message passing between C packages
• Written in C

— numericalFunctions
• Supports 1d numerical functions including addition, multiplication
• Written in C

— PoPI
— GIDI
— MCGIDI

GIDI+ (or gidiplus)

statusMessageReporting and numericalFunctions are also used by FUDGE.

23
LLNL-PRES-xxxxxx

§ Property of Particles Interface (PoPI)

§ Implements the PoPs part of GNDS

§ Uses strings for particle IDs as defined in GNDS
— (e.g., “O16”, “n”, “U235”, “u235_e6”)

§ Current LLNL PoPs files
— pops.xml (currently only defines ground state nuclei)
— metastables_alias.xml (e.g., “Am242_m1” for “Am242_e2”)
— LLNL_alias.xml (e.g., “92235” for “U235”)

PoPI C++ API

24
LLNL-PRES-xxxxxx

Simple PoPI example

PoPI::Database pops("pops.xml");
pops.addFile("metastables_alias.xml")

PoPI::Particle const &O16 = pops.get<PoPI::Particle>("O16");
// O16 = pops.particle("O16");

std::cout << "O16 -> " << O16_3.ID() << std::endl;
std::cout << "mass = " << O16_3.massValue("amu") << std::endl;

O16 -> O16
mass = 15.9949

25
LLNL-PRES-xxxxxx

§ General Interaction Data Interface (GIDI)

§ A C++ API for reading a GNDS reactionSuite.
— Uses PoPI to read the PoPs part.

§ Retrieving and collapsing multi-group data for use in deterministic
codes (or Monte Carlo but that is better handled by MCGIDI).

§ Protare is a virtual class. Actual classes are ProtareSingleton,
ProtareComposite and ProtareTNSL.

§ Support reading/writing GNDS 1.10 and 2.0(?) but, like FUDGE, uses
2.0 internally.

GIDI C++ API

26
LLNL-PRES-xxxxxx

Simple GIDI example

GIDI::Map map(“test.map”, pops);

GIDI::Construction::Settings construction(GIDI::Construction::e_all,
GIDI::Construction::e_nuclearAndAtomic);

GIDI::Protare *protare = map.protare(construction, pops, PoPI::IDs::neutron, "O16");

GIDI::Styles::TemperatureInfos temperatures = protare->temperatures();

GIDI::Settings::MG settings(protare->projectile().ID(), label, true);
GIDI::Vector crossSection = protare->multiGroupCrossSection(settings, particles);

(venv-3.7.2) # temperatures.py ~/GIDI_plus/GIDI/Test/Data/MG_MC3Ts/neutrons/n-008_O_016.xml
/g/g16/beck6/Git/GIDI_plus/GIDI/Test/Data/MG_MC3Ts/neutrons/n-008_O_016.xml
temperature 0.0 K: eval

temperature [K] heated griddedCrossSection URR_probabilityTables heatedMultiGroup SnElasticUpScatter
--

300.1 heated_000 MonteCarlo_000 MultiGroup_000
1.16e+04 heated_001 MonteCarlo_001 MultiGroup_001
1.16e+06 heated_002 MonteCarlo_002 MultiGroup_002

typedef std::vector<Styles::TemperatureInfo> TemperatureInfos;

27
LLNL-PRES-xxxxxx

§ Monte Carlo GIDI (MCGIDI)

§ A C++ API for Monte Carlo transport codes

§ Can do LLNL model A and B (MCNP) upscatter for outgoing particles

§ Supports broadcasting for MPI and GPUs

§ Implemented in LLNL’s Monte Carlo transport code Mercury

MCGIDI C++ API for GNDS

28
LLNL-PRES-xxxxxx

Simple MCGIDI example

double energy = 14.1, crossSection, reactionCrossSection;

MCGIDI::DomainHash domainHash(4000, 1e-8, 10);
MCGIDI::Protare *MCProtare = MCGIDI::protareFromGIDIProtare(*protare, pops, MC

particles, domainHash, temperatures, reactionsToExclude);

int hashIndex = domainHash.index(energy);
crossSection = MCProtare->crossSection(URR_infos, hashIndex, temperature, energy);
reactionCrossSection = MCProtare->reactionCrossSection(ir, URR_infos, hashIndex,

temperature, energy);

int reactionIndex = MCProtare->sampleReaction(URR_infos, hashIndex,
temperature, energy, crossSection, rng, rngState);

reaction->sampleProducts(MCProtare, energy, input, products);

