

Delivering science and technology to protect our nation and promote world stability

LABORATORY DIRECTED RESEARCH & DEVELOPMENT

Getting sensitivities for various integral responses supporting nuclear data validation and adjustment

J. Hutchinson, J. Alwin, A. Clark, T. Cutler, M. Grosskopf, W. Haeck, M. Herman, N. Kleedtke, J. Lamproe, R.C. Little, I. Michaud, D. Neudecker M. Rising, T. Smith, N. Thompson, S. Vander Wiel

CSEWG 2021, November 15

LA-UR-21-31279

Tools for sensitivities of different responses

Use cases

11/14/21

EUCLID uses and developed tools to get sensitivities for

various different me	easurement
----------------------	------------

	Observable					
Measurement Method	σ	v	β	PFNS		
Critical experiments	 ✓ 	✓		✓		
Neutron Multiplication Measurements	✓	✓	✓			
Reaction rate ratios	✓	✓		~		
Pulsed Spheres	✓					
Gamma/Neutron Leakage Spectra	✓			✓		
Delayed Neutron Measurements			✓			
Rossi-a	✓	✓	✓			
Reactivity Coefficient	 ✓ 		\checkmark			

Different measurement types give complimentary data which can help to disentangle compensating errors and improve overall validation of nuclear data.

Tools for sensitivities of different responses

Use cases

Using existing sensitivity tools to obtain a diverse collection of sensitivity profiles

- Brute-force sensitivities with FRENDY/SANDY
 - Direct modification of ENDF/ACE files —
 - Requires individual isotope-reaction-energy perturbations and independent MCNP calculations
 - O. Cabellos and A.R. Clark computed pulsed- sphere sensitivities with this methodology*

*D.Neudecker, ANE 159, 108345, (2021).

SENSMG

- Tool wrapped around the LANL deterministic transport code PARTISN
- Requires using multi-group cross sections
- Computed reaction rates, spectral indices (J. Alwin), and subcritical multiplication (A.R. Clark) \rightarrow sensitivities

Tools for sensitivities of different responses

Fission Spectrum

Use cases

Deriving and computing more sensitivities through existing capabilities

Using k_{eff} sensitivities, T. Cutler, J. Hutchinson, N. Kleedtke have derived and simulated other response sensitivities

Beta-effective

 $\beta = 1 - \frac{k_p}{k}$

• Reactivity coefficients

$$\Delta \rho_{a-b} = \left(1 - \frac{1}{k^{(a)}}\right) - \left(1 - \frac{1}{k^{(b)}}\right)$$

Rossi-alpha

$$\alpha = \frac{k_p - 1}{l}$$

Tools for sensitivities

Different responses

Use cases

M. Rising developed new fixed-source sensitivity in MCNP for easier execution and faster run-time.

- Central difference, brute force calculations (FRENDY/SANDY codes)
 - Difficult to distinguish Monte Carlo statistics from small perturbations
 - Computationally expensive
- Differential operator (PERT card)
 - More complicated to use (many input cards needed = isotope x reaction x energy)

689

692

690 pert101:n method=2 cell=1 2

rho=-3.0358e+01

Use cases

- Limited to reactions (no multiplicity, spectrum or angular distributions)
- Adjoint-weighting (new FSEN card) ———
 - Easy to use with accurate results (like KSEN)
 - Reactions, multiplicity, and energy / angular distributions all available

mat=9999

erg=1e-11 2.96937e-09

11/14/21

rxn=2

Verification of the new sensitivity methodology has been undertaken.

- Performing extensive verification to provide a robust and accurate capability
 - Comparison between FSEN and PERT

- Comparison between FSEN and central difference
 - Verification of FSEN using FRENDY results -

LLNL Pulsed Sphere of 0.7 MFP Pu

Computational benefits of the new MCNP6 sensitivity methodology are promising

- FRENDY/SANDY vs. FSEN efficiency
 - Figure of merit (FOM)
 - Measure of Monte Carlo calculational efficiency
 - $FOM = \frac{1}{\text{Time}(CPU) \cdot \text{Var}(S)}$
 - Average efficiency gain for fission reaction
 - $7.3 \cdot 10^5 \text{ x}$
- PERT vs. FSEN efficiency
 - Computational cost is roughly equivalent
 - Pre- and post-processing of PERT results not automated ·
 - No optimization of the prototype FSEN capability (yet)
 - Tools for sensitivities of different responses

Use cases

Human cost to use PERT may be higher with how <u>easy</u> it is to use the new FSEN capability

8

11/14/21

W. Haeck programmed FAUST tool that processes all different output formats into common json format.

- FAUST
 - Input / output processing of MCNP, SENSMG results
 - Handling of all sensitivity data for use in nuclear data adjustment and experiment design optimization
 - Common and easy to use JSON format support (new MCNP6 FSEN output also available in JSON)
 - Crater tool used to **rapidly** study impact of nuclear data changes on validation benchmarks ______

Tools for sensitivities of different responses

Output from Crater Tool within FAUST

	==== Modifie	Pu239 d react	==== ion(s)						
esults	Benchma	rk Name			Diff.		Old Bias		New Bias
r data	MIX-COM MIX-COM MIX-MET MIX-MET	P-FAST- P-FAST- -INTER- -MIXED-	002-00: 003-00: 004-00: 001-00:	1 1 1 1	(pcm) -27 -28 -18 -3		(pcm) -494 -73 426 81		(pcm) -521 -101 408 78
t	PU-MET- PU-MET- PU-MET- PU-MET-	FAST-00 FAST-00 FAST-00 FAST-00	1-001-9 2-001 5-001 6-001		-15 -14 -20 -22		44 133 -73 -30		29 119 -93 -52
lear	PU-MET- PU-MET- PU-MET- PU-MET- PU-MET-	FAST-00 FAST-01 FAST-01 FAST-01 FAST-01	8-001 1-001 2-001 3-001 5-001		-20 -13 -24 -23 -20		-239 77 106 -559 -39		-259 64 82 -582 -59
	PU-MET- PU-MET-	FAST-04 FAST-04	5-006- 5-007- 02-001		-19 -19 -20		723 691		704 672 1676
	PU-MET- PU-MET-	INTER-Ø	03-001 04-001		-19 -19		154 -71		135 -90
Use cases	Manuall Modifie 90 expe St. Dev Average	Pu239 y set cl d react riments iation: Bias :	<pre>anges ion: with old 495 191</pre>	['tota absolu N => 4 => 1	l nu'] te cha ew 90 pcm 76 pcm	0. Inge	999 68 > 0.0	-50 pc	0 keV m

EUCLID Uses sensitivities for many use-cases.

Neutron Transport Simulation (MCNP)

Validation Experiments

ML-Augmented Search for Compensating Errors

Experiment Refines Nuclear Data to Improve Simulations

> ML-Optimized Experiment to Resolve Compensating Errors

Tools for sensitivities of different response

Use cases

One use-case is adjustment: we can filter to and select from our diverse set of benchmarks for adjustment

Original ○ Inflate Uncertainty for Labeled Questionable Benchmarks Adjustment tool developed by Mike Grosskopf. ● No Correction ○ Pulsed Sphere GP Correction for Long TOF Set Gaussian Process TOF Correlation Length (ns): 10.0 25.0 50.0 100.0 150.0 200.0 Set TOF Gaussian Process Standard Deviation (cm^-2 ns^-1): 1.0e-5 1.0e-4 1.0e-3 1.0e-2

Select Benchmarks to Adjust To:

s	ELECT ALL	DESELECT ALL									
4	Benchmark Type	es 🌣 Experi	ment Names 🍦	Experimental Value	Calculated Value	Expt. Uncertainty	Calc. Uncertainty	Total Uncertainty	Bias (sigmas)	Time-of-Flight \$	D-Optimality
	filter data		PU-MET								
	criticalit	y PU-MET-FAST	-001-001-s	1	1.00044	0.00129	0.0008	0.001292478239662	-0.3404312633650697		0.00012225205129393036
	criticalit	y PU-MET-FA	ST-002-001	1	1.00133	0.002	0.0008	0.0020015993605114	-0.664468637550046		0.0000826247873474197
	criticalit	y PU-MET-FA	ST-005-001	1	0.99927	0.0013	0.00009	0.0013031116606031	0.5601975809672006		0.00010273708220366292
	criticalit	PU-MET-FA	ST-006-001	1	0.9997	0.003	0.0001	0.0030016662039607	0.09994449069790533		0.0001225526093910824
	criticalit	PU-MET-FA	ST-008-001	1	0.99761	0.0006	0.00009	0.0006067124524847	3.939263138925394		0.00010079873258719962
	criticalit	PU-MET-FA	ST-011-001	1	1.00077	0.001	0.00011	0.0010060318086422	-0.7653833540702604		0.00009320550584870178
	criticalit	PU-MET-FA	ST-012-001	1.0009	1.00196	0.0021	0.0001	0.0021023796041628	-0.504190583803808		0.00010864902908367885
	criticalit	PU-MET-FA	ST-013-001	1.0034	0.99781	0.0023	0.00009	0.0023017601960239	2.428576186892256		0.00009735494910760852
	criticalit	PU-MET-FA	ST-015-001	1.0041	1.00371	0.0026	0.0001	0.0026019223662515	0.1498891761946572		0.00009873491029936234
	criticalit	PU-MET-FA	ST-016-001	0.9974	1.0206	0.0042	0.00012	0.0042017139360027	-5.5215562871163275		0.00006938027010215084
	criticalit	PU-MET-FA	ST-016-002	1	1.01019	0.0038	0.00012	0.0038018942647054	-2.680242871191348		0.0000687562355783532
	criticalit	PU-MET-FA	ST-016-003	1	1.0085	0.0033	0.00011	0.0033018328243567	-2.5743277907039457		0.0000686450512013453
	criticalit	PU-MET-FA	ST-016-004	1	1.00787	0.003	0.00012	0.0030023990407672	-2.6212371817135374		0.00006887348720853011
	criticalit	y PU-MET-FA	ST-016-005	1	1.00776	0.0034	0.00012	0.0034021169879943	-2.280932733172958		0.00006858819619233457
_			am 03.6 00.6	,	1 01003	0 0033	0.00011	0 0000010000000000	3 133534707136657		A AAAACAAAACCC3E1034A4

1.0e-1

400.0

1.0e00

Adjusting to Jezebel we can explore the impact on nuclear data and the propagated prediction and uncertainties for Jezebel

EUCLID Adjustment Visualization

Nuclear Data Adjustment to Benchmark Data by Augmented GLLS

UPDATE

Tools for sensitivities of different responses

Use cases

One warning (among many): adjusting to data with unaccounted for biases leads to unreasonable results.

Select Benchmarks to Adjust To:

SELECT ALL	DESELECT ALL							
Benchmark Types	Experiment Names \$\overline\$	Experimental Value	Calculated Value	Expt. Uncertainty	Calc. Uncertainty	Total Uncertainty	Bias (sigmas)	Time-of-Flight
AA pulse	pu pu							
pulsed sphere	pu0.7b_020	0.0007147913970509	0.000681932	0.0000359215	0.000005932808399999999	0.00003640813614786001	0.9025289544472154	225
pulsed sphere	pu0.7b_021	0.0007122360609277	0.000682894	0.0000358595	0.000060777566	0.00003637090685615144	0.8067453760157601	227
pulsed sphere	pu0.7b_022	0.0007600208464308	0.000692146	0.000037023	0.000063677432	0.00003756661659587068	1.806786252831212	229
pulsed sphere	pu0.7b_023	0.0008498409111599	0.0007241289999999	0.0000391185	0.0000072412899999999999	0.00003978307835140589	3.1599342325795003	231
pulsed sphere	pu0.7b_024	0.0008191129942789	0.000767262	0.00003841550000000005	0.000066751794	0.00003899113566276551	1.3298149283816565	233
pulsed sphere	pu0.7b_025	0.0007823800375085	0.000814031	0.0000375555	0.000006837860400000006	0.00003817292122827238	-0.8291469835967908	235
pulsed sphere	pu0.7b_026	0.0009983059399155	0.000855741	0.000042355500000000005	0.0000071882244	0.00004296113301898305	3.318463222385344	237
pulsed sphere	pu0.7b_027	0.0010256480364333	0.000907246	0.0000429255	0.0000075301418	0.00004358097733849147	2.716828388534677	239
pulsed sphere	pu0.7b_028	0.0010420660710246	0.000941066	0.000043263	0.00000781084780000001	0.00004396244434008151	2.2974170918088843	241
pulsed sphere	pu0.7b_029	0.0010045026300141	0.000975567	0.000042485500000000005	0.000007999649400000001	0.0000432320725940004	0.6693093409108383	243
pulsed sphere	pu0.7b_030	0.0009608063823081	0.00102875	0.000041562	0.00008332875	0.00004238911003743326	-1.6028554888720192	245
pulsed sphere	pu0.7b_031	0.0011343775884738	0.00109541	0.00004511850000000005	0.000008872821	0.00004598267059173533	0.8474407417476941	247
pulsed sphere	pu0.7b_032	0.0011301612838705	0.00115419	0.0000450355	0.00000888726300000001	0.00004590402709873252	-0.5234555146505547	249
pulsed sphere	pu0.7b_033	0.0012248364872336	0.00122588	0.000046865	0.00009316688	0.000047782098115186864	-0.02183899007290044	251
pulsed sphere	pu0.7b_034	0.0012535840186192	0.00125507	0.000047407	0.00009538532	0.00004835708057477233	-0.030729344351182287	253
pulsed sphere	pu0.7b_035	0.0012555005207115	0.0013207	0.0000474425	0.00000964111	0.0000484122072238201	-1.3467570067001615	255
pulsed sphere	pu0.7b_036	0.0013698518122229	0.00136453	0.0000495365	0.000009961069	0.00005052808850404655	0.10532383829389909	257
pulsed sphere	pu0.7b_037	0.001306032292547	0.00141788	0.000048379	0.00000992516	0.00004938660184731888	-2.264737869570025	259
pulsed sphere	pu0.7b_038	0.0014092678719227	0.00151701	0.00005024	0.000011377575	0.00005151220062160638	-2.091584649406505	261
pulsed sphere	pu0.7b_039	0.0015691041464263	0.00156268	0.00005299	0.00010782492	0.00005407589327722719	0.1187987111625835	263

As mentioned however, adjusting to data with unaccounted for biases leads to unreasonable results

EUCLID Adjustment Visualization

Nuclear Data Adjustment to Benchmark Data by Augmented GLLS

Tools for sensitivities of different responses

Use cases

Adding in a Gaussian process with tunable parameters to account for the bias uncertainty for long TOF mitigates this issue:

EUCLID Adjustment Visualization

Nuclear Data Adjustment to Benchmark Data by Augmented GLLS

Tools for sensitivities of different responses

Use cases

Experiments Underpinned by Computational Learning for Simulations Improvements in nuclear

<u>D</u>ata

Wim Haeck

Michal Herman

Denise Neudecker

Jennifer Alwin

Alexander Clark

Juliann Lamproe

Robert Little

Michael Rising

Experiments

Michael Grosskopf

Noah Kleedtke

Isaac Michaud

Travis Smith

Scott Vander

Wiel

Theresa Cutler

Jesson Hutchinson

Summary

- EUCLID computed sensitivities of several integral responses to nuclear data,
- EUCLID leveraged existing tools, but new ones were also developed,
- EUCLID uses sensitivities for validation, finding where compensating errors could hide in our libraries, optimization of integral experiments and adjustment,
- We are happy to share our sensitivities after release and are establishing contact with the NEA about possible sharing these data through their tools to the community.

Acknowledgements

- Research reported in this publication was supported by the U.S. Department of Energy LDRD program at Los Alamos National Laboratory.
- NCERC is supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.

Backup

Critical Experiments (k_{eff} inference)

- At or very near delayed critical
- Convenient; uncertainties very small (~0.1%)
- Well understood
- Requires little inference
- Most common type of measurement $\rho(\$) = \frac{\rho}{\beta_{eff}} = \frac{(k_{eff}-1)}{(k_{eff}\beta_{eff})} = \Lambda\omega + \sum_{i=1}^{\circ} \frac{\beta_i \omega}{\omega + \lambda_i}$ in validation
- Sensitivity Simulation capabilities
 - KSEN (already developed and tested)
 - Whisper 1.1
 - Faust for analysis
 - Critical experiments are the traditional metric for integral experiment response in nuclear data evaluation.

Neutron noise experiments

- Description
 - Subcritical measurements
 - Greater Sensitivities to spontaneous fission nuclides

 $R_1 = \epsilon M_L v_{S1} F_S$

$$R_2 = \epsilon^2 M_L^2 F_S \left(\bar{v_{52}} + \frac{M_L - 1}{\bar{v_{I1}} - 1} \bar{v_{51}} \bar{v_{I2}} \right)$$

FUND-NCERC-PU-HE3-MULT-001-007_Pu-239_cross section_nubar

Sensitivity Simulation capabilities

- SENSMG
- Faust for analysis

Neutron noise measurements have higher sensitivities to nuclides with significant spontaneous fission emission versus keff.

Reaction Rate Ratios

- Description
 - comparison of reactions in two fissionable components
 - e.g. ²³⁹Pu(n,f)/ ²³⁵U(n,f)

$$\frac{\langle \sigma^x \rangle}{\langle \sigma^y \rangle} = \frac{\int \sigma^x(E) \,\psi(E) dE}{\int \sigma^y(E) \,\psi(E) dE}$$

Sensitivity Simulation capabilities SENSMG New FSEN card in MCNP6 (developed under this project) New portion of Faust for analysis

U238f/U235f Rxn Rate

Reaction rate ratios are insensitive to the value of keff

Pulsed Spheres

- Description
 - Decouple from fissionable isotope
 - Focus on nuclear data above 5-15 MeV
 - Dependent on thickness of material and level structure
 - High sensitivity to angular distributions and PFNS

Pulsed spheres decouple sensitivity of fissionable and nonfissionable material, and significantly extend the energy range for validation.

Gamma/ Neutron Leakage Spectra

- Description
 - Measure of the energy spectrum of the exterior of the assembly
 - Focus on gamma/ neutron energy measurements
 - Preferably subcritical system to not overwhelm detectors
 - Significant sensitivity to room return
- Sensitivity Simulation Capability
 - SENSMG
 - FSEN in MCNP6

Leakage neutron spectra measurements focus on the energy of the neutrons, independent of keff

Delayed Neutron Measurements

- Description
 - Inference of the delayed neutron fraction and groups
 - Converts measured system values (e.g. neutron e-folding time, neutron lifetime) to calculated system values (keff)
 - Determines how reliant the system is on neutrons released later in time, which makes it controllable

$$\beta_{eff} = 1 - \frac{k_p}{k_{eff}}$$

- Sensitivity Simulation Capabilities
 - Currently requires two separate simulations
 - Faust for analysis (written under this project)

²³⁵U fission sensitivity

Delayed neutron sensitivities $(S_{\beta eff,x})$ exhibit very different sensitives than $k_{eff} (S_{k,x})$ for the same reaction.

Prompt and delayed neutrons have different energies, resulting in unique sensitivity profiles which are different from other responses such as keff.

Rossi-alpha Measurements

- Description
 - Measurement at delayed critical and slightly subcritical
 - rate at which the prompt neutron population changes as a function of time
 - used to infer parameter neutron lifetime, I.
 - Can be used to infer reactivity

Sensitivity Simulation Capabilities

Rossi-alpha measurements probe the system lifetime, a key aspect of time dependent responses.

Eljen [3].

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20 31 32 33 34 35 36 37 38 39

 $-\rho$

MCNP with PERT Future: FSEN

Reactivity Coefficients

- Compare worth of a sample to worth of void in the location in the assembly
- Focused on effects from a small change (often 5-20 g)
- Removes some systematic unc

$$\Delta \rho_{a-b} = \left(\frac{1}{keff^{b}}\right) - \left(\frac{1}{keff^{a}}\right) = (\rho_{a}[\$] - \rho_{b}[\$])\beta_{eff}$$

Sensitivity Simulation Capabilities

- Currently requires two separate simulations
- Faust for analysis (written under this project)

Reactivity coefficients remove some systematic uncertainties and show distinctly different sensitivities to keff

Typical Uncertainties for the Various Measurement Methods

Measurement Method	
	Typical Uncertainty (%)
Critical experiments	0.1-0.5
Noutron Multiplication Massuraments	R1: 1-3,
	R2 and Y: 2-9
Reaction rate ratios	0.9-2.0
Pulsed Spheres	5-10
Gamma/Neutron Loakago Sportra	3-20 (depending upon
	energy bin)
Delayed Neutron Measurements	8
Rossi-a	1-3
Reactivity Coefficient	7

Values based on ICSBEP and IRPhEP benchmarks

