

Covariance update for light elements

Cross Section Evaluation Working Group Covariance Committee G. Hale & <u>M. Paris</u> (LANL/T-2) 2021-11-15

LA-UR-21-31268

Evaluation flowchart

Parameter uncertainty from χ^2

The Old Way gives too-small uncertainty

• At a solution:
$$\left. \frac{\partial \chi^2}{\partial p} \right|_{\hat{p}} \approx 0 \qquad \chi^2(p) \approx \chi^2(\hat{p}) + \sum_{\alpha,\beta=1}^{N_p} \delta p_\alpha(C^{-1})_{\alpha\beta} \delta p_\beta$$

- Variations at \hat{p} : $\delta \chi^2(p) = \chi^2(\hat{p} + \delta p) \chi^2(\hat{p})$ = $\delta p_1 A \delta p_1 + \delta p_1 B \delta p_2 + \delta p_2 B^T \delta p_1 + \delta p_2 D \delta p_2$
- Change in χ^2 when $\{p_2\}$ change, re-optimize $\delta\chi^2$ w.r.t. $\{p_1\}$ $\delta\chi^2(p_1 + \delta p_1^{min}, p_2 + \delta p_2) = \sum_{\alpha,\beta=N_1+1}^{N_2} \delta p_{2,\alpha} \tilde{D}_{\alpha\beta}^{-1} \delta p_{2,\beta}$
- \tilde{D} : restriction of C to $\{p_2\}$ -subspace

$$\delta\chi^2 = \frac{(\delta p_0)^2}{C_{00}} \implies \delta p_0 = (C_{00})^{1/2} \iff \delta\chi^2 = 1$$

• <u>NB</u>: the $\delta \chi^2$ = hypersurface's average distance shrinks with incr. N_p

Parameter variance

• At a solution
$$\left. \frac{\partial \chi^2}{\partial p} \right|_{\hat{p}} \approx 0 \qquad \chi^2(p) \approx \chi^2(\hat{p}) + \sum_{\alpha,\beta=1}^{N_p} \delta p_\alpha(C^{-1})_{\alpha\beta} \delta p_\beta$$

• Assuming a normal distribution

$$P_{c}(p|y) = \frac{1}{\det C^{1/2}(2\pi)^{N_{p}/2}} e^{-\frac{1}{2} [\chi^{2}(p) - \chi^{2}(\hat{p})]},$$

$$\langle (\delta p_{\alpha})^{2} \rangle = \int_{-\infty}^{\infty} dp_{1} \cdots \int_{-\infty}^{\infty} dp_{N_{p}} P_{c}(p|y) (\delta p_{\alpha})^{2} = C_{\alpha\alpha}$$

Change in chi-squared $\delta p_{\mu} = (C_{\alpha\alpha})^{1/2} \delta_{\mu\alpha}$

$$\delta \chi^{2}(p) = \chi^{2}(\hat{p} + \delta p) - \chi^{2}(\hat{p}) = \sum_{\alpha,\beta} \delta p_{\alpha} (C^{-1})_{\alpha\beta} \delta p_{\beta}$$

$$\delta\chi^2(\delta p_{\mu}) = C_{\mu\mu}C_{\mu\mu}^{-1} = 1 - \sum_{\beta \neq \mu} (C_{\mu\beta})^2 < 1$$

• <u>NB</u>: adding redundant params can lower $\delta \chi^2(\delta p_\mu)$

Uncertainties from chi-squared minimization

Data Covariances from R-Matrix Analyses of Light Nuclei

G.M. $Hale^{1,*}$ and M.W. $Paris^1$

¹T-2: Nuclear and Particle Physics, Astrophysics and Cosmology, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA (Received 1 July 2014; revised received 15 September 2014; accepted 26 September 2014)

Nuclear Data Sheets 123 (2015) 165-170

$$\chi^2_{\rm EDA}(\mathbf{p}) = \sum_{M,i_M} \left[\frac{n_{i_M} X_{i_M}(\mathbf{p}) - R_{i_M}}{\delta R_{i_M}} \right]^2 + \left[\frac{n_M S_M - 1}{\delta S_M / S_M} \right]^2 - \begin{bmatrix} M : \text{experimental setup} \\ i : \text{observable} \\ R_{i_M}, \delta R_{i_M} : \text{relative measurement, uncert.} \\ X_{i_M} : \text{calc'd observable} \\ n_M : \text{normalization} \end{bmatrix}$$

Uncertainty determination comparison:
1) previous:
$$\delta\chi^2 = 1 \implies$$
 Uncertainties too small; scaling: $\delta p_i = (C_{ii}^0)^{1/2} \sim \mathcal{O}(N_p^{-1/2})$
2) improved:
 $P(\delta\chi^2|k \text{ DOF}) = \frac{1}{2^{k/2}\Gamma(k/2)} \int_0^{\delta\chi^2} dt t^{k/2-1} e^{-t/2} = \text{CL}(68\%: 1 - \sigma; 95\%: 2 - \sigma; ...)$
Better scaling: $\delta p_i \sim (N_p C_{ii})^{1/2}$

Observable error propagation *Covariance matrix*

The parameter covariance matrix is $C_0 = 2G_0^{-1}$, and so first-order error propagation gives for the cross-section covariances

$$\chi^{2}(\mathbf{p}) = \chi_{0}^{2} + (\mathbf{p} - \mathbf{p}_{0})^{\mathrm{T}} \mathbf{g}_{0} + \frac{1}{2} (\mathbf{p} - \mathbf{p}_{0})^{\mathrm{T}} \mathbf{G}_{0} (\mathbf{p} - \mathbf{p}_{0}) \begin{cases} \chi_{0}^{2} = \chi^{2}(\mathbf{p}_{0}) \\ \mathbf{g}_{0} = \nabla_{\mathbf{p}} \chi^{2}(\mathbf{p}) \Big|_{\mathbf{p} = \mathbf{p}_{0}} \approx 0 \\ \mathbf{G}_{0} = \nabla_{\mathbf{p}} \mathbf{g}(\mathbf{p}) \Big|_{\mathbf{p} = \mathbf{p}_{0}} \end{cases}$$

$$\operatorname{cov}[\sigma_{i}(E)\sigma_{j}(E')] = \left[\nabla_{p}\sigma_{i}(E)\right]^{T} C_{0}\left[\nabla_{p}\sigma_{j}(E')\right]_{p=p_{0}}$$
$$= \Delta\sigma_{i}(E)\Delta\sigma_{j}(E')\rho_{ij}(E,E').$$
observable uncertainties

Example covariance

ENDF/B-VIII.0

- ¹⁷O system
 - (n,el)
 - correlation matrix
 - elements (-1.0,1.0)

Covariances for ENDF/B-VIII.1

Anticipated; time-permitting

- CP induced
 - -p-001_H_001.endf
 - -p-002_He_004.endf
 - -d-002_He_003.endf
 - -t-002_He_004.endf
 - -a-006_C_013.endf

• n induced

- -n-003_Li_006.endf
- -n-004_Be_009.endf
- -n-008_0_016.endf

