

Covariances for the Fission Product Yield Reevaluation

A.E. Lovell, T. Kawano, and P. Talou

CSEWG, Nov. 15 - Nov. 19, 2021

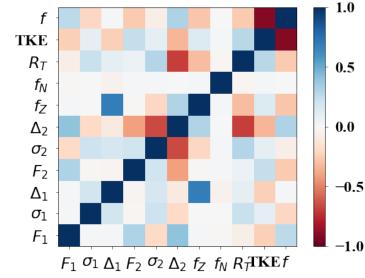
LA-UR-21-31097

Current status of fission product yield covariances

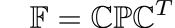
- Uncertainties but not correlations are currently included in ENDF! (For both independent and cumulative fission product yields.)
 - There is also no format for the FPY covariances.

- The NA-22 funded re-evaluation project of the FPYs will include generating covariances.
 - New modeling capabilities (e.g., the LANL-developed, deterministic, Hauser-Feshbach code BeoH) and experimental measurements make it a prime time to perform this reevaluation.
 - Previous ENDF evaluations were based solely on experimental data and conservation/summation rules.
 - A.E. Lovell, T. Kawano, et al., PRC 103, 014615 (2021)
 - S. Okumura, T. Kawano, et al., arXiv:2102.01015 [nucl-th] 1 Feb 2021, in press JNST, LA-UR-21-20820

Model calculations and optimizations are used to produce covariances between fission products

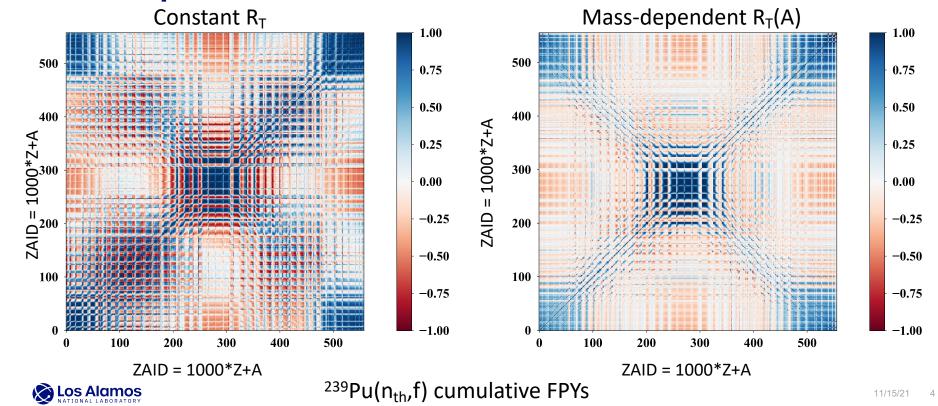

Parameter and observable covariances are straightforward to calculate using a Kalman filter optimization (input of model parameters and baseline calculations plus experimental values and covariances)

Updated parameter values

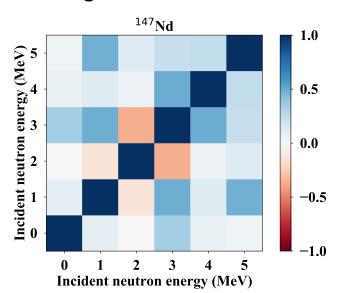

$$\mathbf{x}_1 = \mathbf{x}_0 + \mathbb{P}\mathbb{C}^T \mathbb{V}^{-1}(\phi - f(\mathbf{x}_0))$$

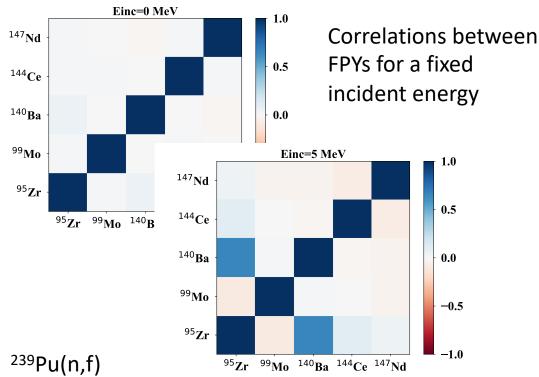
Updated parameter covariances

$$\mathbb{P} = (\mathbb{X}^{-1} + \mathbb{C}^T \mathbb{V}^{-1} \mathbb{C})^{-1}$$



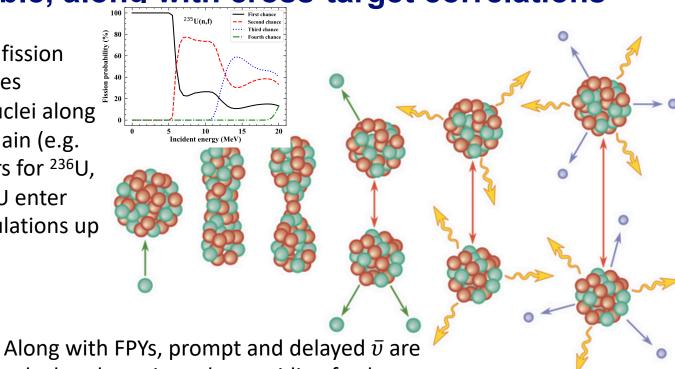
Observable covariances are calculated from parameter covariances and model sensitivities




Covariances depend on the model parameters included in the optimization

Covariances can be calculated between pairs of FPYs and incident energies

Cross-energy correlations for a single cumulative FPY



Future work: cross-observable correlations are accessible, along with cross-target correlations

Multi-chance fission input correlates compound nuclei along an isotopic chain (e.g. fission barriers for ²³⁶U, ²³⁵U, ²³⁴U, ²³³U enter ²³⁵U(n,f) calculations up to 20 MeV)

calculated consistently, providing further parameter

Summary and comments

- Covariances between fission product yields will be available in ENDF as a part of the FPY re-evaluation, based on model calculations (provides a connection to decay data as well as all conservation rules included explicitly).
- The format of these covariances is not determined, and there is probably room for a compact format due to the lack of correlations between many FPYs.
- Are energy-dependent correlations important/useful?
- How can we validates these new covariances?

