Introduction	SCALE Implementation	Data Compression	Conclusions
0000	00	0000	0000

Recent Work on Thermal Scattering Covariance Generation and Compression

¹Aaron G. Tumulak, ²Dorothea Wiarda, ²Andrew M. Holcomb, ¹Brian C. Kiedrowski

¹Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI

²Nuclear Energy and Fuel Cycle Division, Oak Ridge National Laboratory, Oak Ridge, TN

CSEWG Nuclear Data Week(s) - November 15, 2021

In	tro	du	cti	on
0	00			

Data Compression

Table of Contents

Introduction

3 Data Compression

- Data Generation
- Principal Component Analysis
- Reconstruction Error

Introduction	SCALE Implementation	Data Compression	Conclusions
●000	00	0000	0000
Mativation			

- How does is a quantity f affected by uncertainty in x_1, \ldots, x_N ?
- Expand f about $\tilde{f} = f(\tilde{x}_1, \dots \tilde{x}_N)$:

$$f(x_1,\ldots,x_N) = \tilde{f} + \frac{\partial f}{\partial x_1} \left(x_1 - \tilde{x}_1 \right) + \ldots + \frac{\partial f}{\partial x_N} \left(x_2 - \tilde{x}_N \right)$$

• Treating x_1, \ldots, x_N as random variables, we have f as a weighted sum of random variables with variance

$$\mathsf{Var}\left(f\right) = \sum_{i} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} \mathsf{Var}\left(x_{i}\right) + \sum_{i \neq j} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} \mathsf{Cov}\left(x_{i}, x_{j}\right) \,.$$

The partial derivatives \u03c8 f/\u03c8 x_i are sensitivities and Cov (x_i, x_j) is the covariance between x_i and x_j.

Introduction	SCALE Implementation	Data Compression	Conclusions
0000	00	0000	0000
Motivation			
IVIOLIVALION			

The Sandwich Formula

$$Var(f) = s^{T} A s$$

where

$$\boldsymbol{s} = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x} \end{pmatrix} \text{ and } \boldsymbol{A} = \begin{pmatrix} \operatorname{Cov}(x_1, x_1) & \cdots & \operatorname{Cov}(x_1, x_N) \\ \vdots & \ddots & \vdots \\ \operatorname{Cov}(x_N, x_1) & \cdots & \operatorname{Cov}(x_N, x_N) \end{pmatrix}$$

- End users compute *s*.
- Evaluators provide covariances A.
- The Evaluated Nuclear Data File format, ENDF-6 [1] provides file formats covariances for *some* types of nuclear data.

Introduction	SCALE Implementation	Data Compression	Conclusions
0000	00	0000	0000
Thermal Scatt	ering		

Incoherent Inelastic Scattering

$$\sigma\left(E \to E', \mu\right) = \frac{\sigma_{b}}{2k_{B}T} \sqrt{\frac{E'}{E}} e^{-\frac{\beta}{2}} S(\alpha, \beta)$$

where

$$\alpha = \frac{E' + E - 2\mu\sqrt{EE'}}{Ak_BT} \text{ and } \beta = \frac{E' - E}{k_BT}.$$

- At energies (approximately less than 5 eV), thermal scattering takes place.
- The thermal scattering kernel $S(\alpha,\beta)$ is two dimensional data. The double differential scattering cross section $\sigma(E \to E', \mu)$ is actually three dimensional data.
- ENDF-6 does not currently specify a format for storing $S(\alpha,\beta)$ covariance.

Generalized Nuclear Data Format

- New data format [2] to eventually supersede ENDF-6
- Previous work developed a format in the Generalized Nuclear Data format for storing $S(\alpha, \beta)$ covariances.

Figure: Structure of covariance data for thermal scattering data. From [3].

Introduction	SCALE Implementation	Data Compression	Conclus	
0000	•0	0000	0000	

- Implementation performed in AMPX [4] at GNDS Data Structures Level.
- Covariance for $S(\alpha, \beta)$ data is four dimensional.
- α and β indices are flattened to a linear index.
- Underlying data structure is a symmetric two dimensional matrix.

Figure: Hierarchy of abstraction layers for nuclear data in SCALE.

Introduction	SCALE Implementation	Data Compression	Conclusions
0000	0	0000	0000

- The base class Covariance is not necessarily symmetric to account for cross-covariance across different reactions.
- Existing classes updated to inherit from common base classes.

Figure: Covariance class inheritance

Introduction		SCALE Im	plementatio	on		Data Compression	Conclusions
0000		00				000	0000
~	 - (\sim	_		_		

Generating $S(\alpha, \beta)$ Covariance Data

- $\bullet\,$ Covariance data was generated from 1000 random realizations of H in $H_2O.$
- Full covariance matrix had $(182 \times 259)^2 \approx 2 \times 10^9$ entries.
- Full uncompressed covariance matrix occupied about 17.78 GB of storage as HDF5 file.
- GNDS format supports more than just α , β parameters. Adding one more dimension with just 10 points brings data storage into TB range.
- GNDS format supports basic compression methods. Sparsity and symmetric are immediately applicable.

	Min	Max	Points	Interpolation
α	0.0005	632.9	182	Lin-Log
β	0.0	158.1	259	Lin-Log

Table: Example TSL Data Dimensions

D · · · · ·	с . <u>А</u> I		
0000	00	0000	0000
Introduction	SCALE Implementation	Data Compression	Conclusions

Principal Component Analysis

• Decompose the covariance matrix **A** into a unitary matrix of eigenvectors **U** and diagonal matrix of eigenvalues Λ by

$oldsymbol{A} = oldsymbol{U} \Lambda oldsymbol{U}^{\intercal}$.

 If A is of rank r, then there are r eigenvectors making up the columns of U and r eigenvalues making up the diagonal entries Λ:

$$\boldsymbol{U} = \begin{pmatrix} | & | & | & | & | \\ \boldsymbol{u}_1 & \cdots & \boldsymbol{u}_r & \boldsymbol{0} & \cdots & \boldsymbol{0} \\ | & | & | & | & | \end{pmatrix} \quad \boldsymbol{\Lambda} = \operatorname{diag}\left(\lambda_1, \dots, \lambda_r, 0, \dots, 0\right)$$

• A low rank approximation of **A** can be created by keeping only $\tilde{r} < r$ eigenvalues in Λ and discarding the $r - \tilde{r}$ smallest eigenvalues.

1	 	

Data Compression

Conclusions

Principal Component Analysis

• The amount of information lost is

$$\frac{\left\|\boldsymbol{A} - \tilde{\boldsymbol{A}}\right\|_{2}}{\left\|\boldsymbol{A}\right\|_{2}} = \frac{\sqrt{\sum_{i=\tilde{r}+1}^{r} \lambda_{i}}}{\sqrt{\sum_{i=1}^{r} \lambda_{i}}} = \sqrt{\frac{\sum_{i=\tilde{r}+1}^{r} \lambda_{i}}{\sum_{i=1}^{r} \lambda_{i}}}.$$

 Significant amount of information retained by keeping only a few eigenvalues

ĩ	Information Lost	Memory Usage (MB)
0	100.00%	0.0
1	17.34%	0.3771
6	0.94%	2.263
121	0.000997%	45.63
1000	0.00%	377.1

Figure: Frobenius norm of residual matrix $\boldsymbol{A} - \tilde{\boldsymbol{A}}$.

t	r	0	d	u	c	t	ł	0	n
				0					

Data Compression

Principal Component Analysis

- Each sub-block has fixed β values and changing α values.
- The left column shows off-diagonal submatrices (corresponding to β indices [116, 96]).
- The right column shows on-diagonal submatrices (corresponding to β indices [116, 116]).
- Each row shows the approximated submatrix obtained by keeping the first r̃ largest eigenvalues.
- Values for which S(α, β) is undefined have no covariance

Introduction	SCALE Implementation	Data Compression	Conclusions
0000	00	0000	0000
Conclusions			

- Data structures for representing thermal scattering kernel covariances were implemented in AMPX.
- Covariance matrices will be quite large for practical problems.
- GNDS format already supports some methods of compression.
- Principal Component Analysis can take advantage of large singular values to further compress matrices.

Introduction 0000	SCALE Implementation	Data Compression	Conclusions
Future Work			

- Generate temperature dependent S(α, β, T) from perturbed probability density of states.
- Compute sensitivities for a benchmark problem.
- Propagate uncertainties in $S(\alpha, \beta, T)$ through benchmark problem.
- Quantify uncertainty due to uncertainty in $S(\alpha, \beta, T)$.

Introduction	SCALE Implementation	Data Compression	Conclusions			
0000	00	0000	0000			
Acknowledgements						

• This work is performed under NEUP Project 18-150008: Development of Thermal Inelastic Scattering Covariance Data Capabilities with Demonstration of Light Water Evaluation.

Introduction 0000	SCALE Implementation 00	Data Compression 0000	Conclusions
Refere	ences		
Ī	M. HERMAN, "ENDF-6 Formats Manual Data Forma Evaluated Nuclear Data File ENDF/B- BNL-90365-2009, Brookhaven Nationa Nuclear Data Center (2009).	nts and Procedures for th VI and ENDF/B-VII," al Laboratory (BNL) Nat	he tional
	WPEC Subgroup 38, "Specifications for the next generation	nuclear data hierarchy,"	2016.
	A. G. TUMULAK, H. PARK, V. SOBE KIEDROWSKI, "Progress on the Development of Ther Formats and Processing Tools,"	ES, W. S. YANG, and B mal Scattering Covarian	. C.

Trans. Am. Nucl. Soc., 121, 1354 (2019).

D. WIARDA, M. DUNN, N. GREENE, C. CELIK, and L. PETRIE, "AMPX-6: A Modular Code System for Processing ENDF/B," ORNL/TM-2016/43, Oak Ridge National Laboratory (2016).