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Motivation

How does is a quantity f affected by uncertainty in x1, . . . , xN?
Expand f about f̃ = f (x̃1, . . . x̃N) :

f (x1, . . . , xN) = f̃ + ∂f
∂x1

(x1 − x̃1) + . . .+
∂f
∂xN

(x2 − x̃N)

Treating x1, . . . , xN as random variables, we have f as a weighted
sum of random variables with variance

Var (f) =
∑

i

(
∂f
∂xi

)2

Var (xi) +
∑
i ̸=j

∂f
∂xi

∂f
∂xj

Cov (xi, xj) .

The partial derivatives ∂f/∂xi are sensitivities and Cov (xi, xj) is the
covariance between xi and xj.
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Motivation

The Sandwich Formula

Var (f) = s⊺As

where

s =


∂f
∂x1...
∂f
∂x

 and A =

 Cov (x1, x1) · · · Cov (x1, xN)
... . . . ...

Cov (xN, x1) · · · Cov (xN, xN)


End users compute s.
Evaluators provide covariances A.
The Evaluated Nuclear Data File format, ENDF-6 [1] provides file
formats covariances for some types of nuclear data.
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Thermal Scattering

Incoherent Inelastic Scattering

σ (E → E′, µ) =
σb

2kBT

√
E′

E e−
β
2 S (α, β)

where
α =

E′ + E − 2µ
√

EE′

AkBT and β =
E′ − E
kBT .

At energies (approximately less than 5 eV), thermal scattering takes
place.
The thermal scattering kernel S (α, β) is two dimensional data. The
double differential scattering cross section σ (E → E′, µ) is actually
three dimensional data.
ENDF-6 does not currently specify a format for storing S (α, β)
covariance.
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Generalized Nuclear Data Format

New data format [2] to eventually supersede ENDF-6
Previous work developed a format in the Generalized Nuclear Data
format for storing S (α, β) covariances.

Figure: Structure of covariance data for thermal scattering data. From [3].
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SCALE Implementation

Implementation performed in
AMPX [4] at GNDS Data
Structures Level.
Covariance for S (α, β) data
is four dimensional.
α and β indices are flattened
to a linear index.
Underlying data structure is
a symmetric two dimensional
matrix.

In-Memory Representation
- AMPX

GNDS Data Structures
- cross sections
- fission product yields
- covariances

General Purpose Data Containers
- scalars
- strings
- arrays

XML Document
- elements
- attributes
- plaintext

Figure: Hierarchy of abstraction
layers for nuclear data in SCALE.
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SCALE Implementation

The base class Covariance
is not necessarily symmetric
to account for
cross-covariance across
different reactions.
Existing classes updated to
inherit from common base
classes.

Covariance
- padding: T
- matrix: vector<vector<T>>
+ setCovariance(i,j,value): void
+ getCovariance(i,j): T

SymmetricCovariance

+ setCovariance(i,j,value): void
+ getCovariance(i,j): T

SalphaBetaCovariance

+ setCovariance(i,j,k,l,value): void
+ getCovariance(i,j,k,l): double

ResonanceCovariance
- vector<C>
+ hasEnergyDependentRadius: bool
+ getNumRadiusCovs: int
+ addEnergyDependentRadius(c): void
+ getRadiusCov(i): c

Figure: Covariance class inheritance
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Generating S (α, β) Covariance Data

Covariance data was generated from 1000 random realizations of H
in H2O.
Full covariance matrix had (182× 259)

2 ≈ 2× 109 entries.
Full uncompressed covariance matrix occupied about 17.78GB of
storage as HDF5 file.
GNDS format supports more than just α, β parameters. Adding one
more dimension with just 10 points brings data storage into TB
range.
GNDS format supports basic compression methods. Sparsity and
symmetric are immediately applicable.

Min Max Points Interpolation

α 0.0005 632.9 182 Lin-Log
β 0.0 158.1 259 Lin-Log

Table: Example TSL Data Dimensions
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Principal Component Analysis

Decompose the covariance matrix A into a unitary matrix of
eigenvectors U and diagonal matrix of eigenvalues Λ by

A = UΛU⊺ .

If A is of rank r, then there are r eigenvectors making up the
columns of U and r eigenvalues making up the diagonal entries Λ:

U =

 | | | |
u1 · · · ur 0 · · · 0
| | | |

 Λ = diag (λ1, . . . , λr, 0, . . . , 0)

A low rank approximation of A can be created by keeping only r̃ < r
eigenvalues in Λ and discarding the r − r̃ smallest eigenvalues.
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Principal Component Analysis
The amount of information lost is∥∥∥A − Ã

∥∥∥
2

∥A∥2
=

√∑r
i=r̃+1 λi√∑r

i=1 λi

=

√∑r
i=r̃+1 λi∑r

i=1 λi
.

Significant amount of
information retained by
keeping only a few
eigenvalues

r̃ Information Lost Memory Usage (MB)

0 100.00% 0.0
1 17.34% 0.3771
6 0.94% 2.263

121 0.000997% 45.63
1000 0.00% 377.1
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eigenvalues kept r̃
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Figure: Frobenius norm of residual
matrix A − Ã.
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Principal Component Analysis

Each sub-block has fixed β
values and changing α
values.
The left column shows
off-diagonal submatrices
(corresponding to β indices
[116, 96]).
The right column shows
on-diagonal submatrices
(corresponding to β indices
[116, 116]).
Each row shows the
approximated submatrix
obtained by keeping the first
r̃ largest eigenvalues.
Values for which S (α, β) is
undefined have no covariance
and are white space.
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Conclusions

Data structures for representing thermal scattering kernel
covariances were implemented in AMPX.
Covariance matrices will be quite large for practical problems.
GNDS format already supports some methods of compression.
Principal Component Analysis can take advantage of large singular
values to further compress matrices.
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Future Work

Generate temperature dependent S (α, β,T) from perturbed
probability density of states.
Compute sensitivities for a benchmark problem.
Propagate uncertainties in S (α, β,T) through benchmark problem.
Quantify uncertainty due to uncertainty in S (α, β,T).
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