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Assumptions or approximations used with Bayes’ Theorem

1. The model and the prior PDF of data are assumed to be perfect

2. The model is approximated by its 1st order (linear) expansion

3. Prior and posterior PDFs are approximated by normal PDFs.

where

�  {any constraints on posteriors imposed by evaluator},
�  {any parameters needed to define the prior PDF, p(z|�)}. (3)

and where N 0 is a normalization constant. In this manuscript we show that all
extant evaluations implicitly employ an extreme case of this constraint that often
yields unrealistically small uncertainties, and subsequent manual adjustment
of those uncertainties outside the domain of the Bayes’ theorem. To remedy
this, we derive formal mathematical framework for evaluators to finely control
the constraints on posteriors, while maintaining complete harmony with the
Bayes’ theorem. Prior and posterior expectation values of any function of z are
computed as integrals over z, weighted by a corresponding normalized PDF:

hf(z)i =
Z

f(z)p(z|�)dz and (4)

hf(z)i0 =
Z

f(z)p0(z|��)dz, (5)

respectively, where primes on expectation values indicate that posterior PDF,
p0(z|��), also denoted by a prime, has been used. For example, prior expectation
values of generalized data are obtained for f(z) = z:

hzi ⌘
✓
hP i
hDi

◆
, (6)

and the prior covariance matrix, C of generalized data is obtained for f(z) =
(z � hzi)(z � hzi)|, that is,

C ⌘ h(z � hzi)(z � hzi)|i, (7)

that is a 2⇥ 2 block matrix,

C =

✓
M W
W| V

◆
. (8)

If prior PDF is a normal PDF then �  (hzi,C), and

p(z|�) p(z|hzi,C) = N (hzi,C) =
1p

2⇡||C||
e�

1
2 (z�hzi)|C�1(z�hzi) (9)

A set of evaluator-defined constraints, �, imposed on the posterior expectation
values of some evaluator-defined function, �(z, T (·)), where T (·) represents a
model used for data evaluation, usually defined as T (·)  T (P ). In this work,
evaluator-defined constraints on posteriors are limited to h�(z, T (P ))i0, and its
posterior covariance matrix, �0. A particular form of a function �(z, T (P ))
is chosen by the evaluator to reflect some property of the evaluated data. A
generic form used in this work for illustration purposes is:

� ⌘ �(z, T (P )) ⌘ T (P )�D, (10)
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whose prior and posterior expectation values are computed by setting f(z) = �,
but the constraint is imposed on the posterior expectation values only, i.e., on the
posterior PDF, such that h�i0 and �0 equal to the values imposed by evaluator.
On the other hand, prior expectation values of � and its prior covariance matrix,
�, are determined by the prior PDF, p(z|�), and are not constrained. (When
applied to line-fitting, �(T (P ), D) could be alternatively defined as the nearest
distance between each point in the data set, D, and the line defined by T(P).)
The posterior PDF is constrained by evaluator-defined posterior expectation
values, h�i0, and by constraining its posterior covariance matrix �0, that is,

�0 ⌘ h(� � h�i0)(� � h�i0)|i0, (11)

where posterior expectation values are indicated by primes.
Constraints on posterior expectation yields a likelihood function, expressed

in the following form in order to simplify the ensuing derivation

L(�|z, �) L(h�i0,�0|z, �) = e�
1
2 (���)|⇤�1(���) (12)

where the vector � and the matrix⇤ contain (constant) parameters whose values
are determined by the constraints on the posterior expectation values h�i0, and
the corresponding posterior covariance matrix, �’. Combining the prior PDF
and the likelihood function into Eq. (2) yields a posterior PDF of the form

p0(z|��) N 0L(h�i0,�0|z, �)⇥ p(z|�), (13)

that should be used to compute posterior expectation values of evaluated data,
hT (P )i0 and the corresponding covariance matrix.

Inserting a normal prior PDF specified by a prior mean values, hzi and the
prior covariance matrix, C, into Eq. (2) yields a posterior PDF of the form

p0(z|��) N 0L(h�i0,�0|z, hzi,C)⇥N (z|hzi,C), (14)

which is a special case of posterior PDF that will reveal a generalization of the
conventional cost function in the next Section.

All conventional evaluation methods implicitly set h�i0 = 0 and �0 = 0, for
which � = 0 and ⇤ = 0, so that L(h�i0,�0|z, hzi,C) = �Dirac(T (P ) � D), and
the posterior PDF becomes (after eliminating its dependence on data, D, by
integrating1 it over D)

p0(P |��) N 0N ((z|
D=T (P )

)|hzi,C), (15)

which leads to a conventional minimization of �2(P ) appearing in the exponent

of the normal PDF above, e��2(P )/2, i.e.,

�2(P ) = (z|
D=T (P )

� hzi)|C�1(z|
D=T (P )

� hzi). (16)

1The posterior PDF will still depend on hDi, since the integration of the posterior PDF
over D does not a↵ect prior expectation values, hDi, already present in the posterior PDF.
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Abstract

A new Bayesian evaluation framework enables evaluators to systemati-
cally control any imperfections in the data for the first time on a point-by-
point basis, while remaining in harmony with Bayes theorem throughout.
Data imperfections include, but are not limited to, inconsistent data, or
incomplete information on prior PDF of data or model parameters. The
framework introduces a new set of parameters evaluators may judiciously
use to moderate the e↵ect of imperfections in data, by defining a set
of posterior expectation values of deviations between the data and the
model predictions. The final outcome of such an evaluation is a Bayesian
posterior probability distribution function that should be used for calcu-
lation of any other posterior expectation values. Analytical solutions for
this framework are derived for linear models, and iterative solutions are
derived for non-linear models. It is demonstrated how this framework
converges toward the conventional �2-minimization evaluation method in
the limit vanishing imperfections. This framework can seamlessly include
integral benchmark experiments for simultaneous evaluations with (raw
and/or reduced) di↵erential data, and it reveals potentially useful ex-
tensions of Bayesian adjustment method implemented in the TSURFER
code.

1 Background and Notation

Generalized data vector, denoted by z, is a concatenation of parameter vector,
P , and data vector, D:

z ⌘
✓
P
D

◆
. (1)

Bayes theorem expresses the posterior probability function (PDF), p0(z|��), of
generalized data, z, as a product of the prior PDF, p(z|�), and the likelihood
function, L(�|z�),

p0(z|��) = p0(z|��) = N 0L(�|z�)⇥ p(z|�), (2)
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whose prior and posterior expectation values are computed by setting f(z) = �,
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• We recognize that 1. is equivalent to constraining the posterior
expectation values of     , and of its covariance matrix, to 0:

For W = 0, that is, in the absence of any covariance between the model param-
eters, P , and data, D, it becomes:

�2(P ) (P � hP i)|M�1(P � hP i) + (T (P )� hDi)|V�1(T (P )� hDi). (17)

When the posterior PDF is a normal PDF, then the expectation values hP i0
are equal to the values P̂ that minimize �2, and, their corresponding posterior
covariance matrix, M̂, is evaluated at that minimum. Data evaluations are then
reported as T (P̂ ) and the corresponding covariance matrix is computed in linear
approximation as S|P̂M̂S||

P̂
, where S|P̂ are model sensitivities evaluated at P̂ .

The Bayesian evaluation framework for imperfect data empowers evaluators
to modify data points, one at a time, even when there may be multiple mea-
sured data of an identical quantity. This should be contrasted to modifying
an imperfect model when there are several measurements of a same quantity.
A simple model, T (P ) = P where P is a single scalar parameter, could be
used to illustrate the di↵erence between the two, for prior generalized data
hzi = (hP i, hDi) = (2, 1, 3). Then introducing an additive correction to account
for a model imperfection would a↵ect the model alone (while keeping the data
fixed), whereas accounting for data imperfections enables addressing imperfec-
tions at each data point, in this case hDi = (1, 3), while keeping the model
fixed.

2 Posterior PDF: linear models and normal PDFs

It is instructive to illustrate some of these concepts when the model, T (P ), is
a linear function of parameters, P , and when all PDFs are assumed to be nor-
mal, because of the simplifications this case a↵ords, and because the introduced
extensions to the conventional �2-minimization method are straightforward. A
generalized cost function is defined by collecting the exponents of the likelihood
function, and the prior PDF, on the right hand side of Eq. (14), to obtain

p(z|��) N 0e�
1
2X

2(z), (18)

where

X2(z) ⌘ (� � �)|⇤�1(� � �) + (z � hzi)|C�1(z � hzi) (19)

= X2(z)|
z=hzi0 + (z � hzi0)|C0�1(z � hzi0) (20)

where �  T (P )�D, and the (linear) model, T (P ), is assumed to be perfect, and
where � and ⇤ play a role of parameters whose values are to determined from
the constraints on the posterior expectation values h�i0 and �0 = h(��h�i0)(��
h�i0)|i0, and where N 0 = 1/

p
2⇡||C 0||.2 For linear models and normal PDFs

2Note that for � = 0 and in the limit ⇤ ! 0 the first term becomes a Dirac �-function
in (T (P ) � D), thanks to which data, D, can be straightforwardly integrated out, that is,
“marginalized”, and consequently D is to be replaced by the T (P ) in the second term, thus
yielding the conventional form of the cost function, known as �2.
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• We remove 1. by letting evaluator choose values of         and

• 2. and 3. can be removed by Metropolis-Hastings Monte Carlo
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Overview of approximations used by ORNL codes

Code name <delta>’ Delta’ Prior/Post PDF Cost Function Minimization
SAMMY 0 0 Normal/Normal 𝜒!(𝑧 = (𝑃, 𝑇 𝑃 ), 𝑧 , 𝑪) Linear, iterative
TSURFER 0 0 Normal/Normal −|| − Linear, 1 step
BMC Any Any Any/any 𝑋!(𝑧, 𝑧 , 𝑪, 𝑇 𝑃 , 𝜆, 𝚲) MHMC
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of posterior expectation values of deviations between the data and the
model predictions. The final outcome of such an evaluation is a Bayesian
posterior probability distribution function that should be used for calcu-
lation of any other posterior expectation values. Analytical solutions for
this framework are derived for linear models, and iterative solutions are
derived for non-linear models. It is demonstrated how this framework
converges toward the conventional �2-minimization evaluation method in
the limit vanishing imperfections. This framework can seamlessly include
integral benchmark experiments for simultaneous evaluations with (raw
and/or reduced) di↵erential data, and it reveals potentially useful ex-
tensions of Bayesian adjustment method implemented in the TSURFER
code.

1 Background and Notation

Generalized data vector, denoted by z, is a concatenation of parameter vector,
P , and data vector, D:

z ⌘
✓
P
D

◆
. (1)

Bayes theorem expresses the posterior probability function (PDF), p0(z|��), of
generalized data, z, as a product of the prior PDF, p(z|�), and the likelihood
function, L(�|z�),

p0(z|��) = p0(z|��) = N 0L(�|z�)⇥ p(z|�), (2)

1

where

�  {any constraints on posteriors imposed by evaluator},
�  {any parameters needed to define the prior PDF, p(z|�)}. (3)

and where N 0 is a normalization constant. In this manuscript we show that all
extant evaluations implicitly employ an extreme case of this constraint that often
yields unrealistically small uncertainties, and subsequent manual adjustment
of those uncertainties outside the domain of the Bayes’ theorem. To remedy
this, we derive formal mathematical framework for evaluators to finely control
the constraints on posteriors, while maintaining complete harmony with the
Bayes’ theorem. Prior and posterior expectation values of any function of z are
computed as integrals over z, weighted by a corresponding normalized PDF:

hf(z)i =
Z

f(z)p(z|�)dz and (4)

hf(z)i0 =
Z

f(z)p0(z|��)dz, (5)

respectively, where primes on expectation values indicate that posterior PDF,
p0(z|��), also denoted by a prime, has been used. For example, prior expectation
values of generalized data are obtained for f(z) = z:

hzi ⌘
✓
hP i
hDi

◆
, (6)

and the prior covariance matrix, C of generalized data is obtained for f(z) =
(z � hzi)(z � hzi)|, that is,

C ⌘ h(z � hzi)(z � hzi)|i, (7)

that is a 2⇥ 2 block matrix,

C =

✓
M W
W| V

◆
. (8)

If prior PDF is a normal PDF then �  (hzi,C), and

p(z|�) p(z|hzi,C) = N (hzi,C) =
1p

2⇡||C||
e�

1
2 (z�hzi)|C�1(z�hzi) (9)

A set of evaluator-defined constraints, �, imposed on the posterior expectation
values of some evaluator-defined function, �(z, T (·)), where T (·) represents a
model used for data evaluation, usually defined as T (·)  T (P ). In this work,
evaluator-defined constraints on posteriors are limited to h�(z, T (P ))i0, and its
posterior covariance matrix, �0. A particular form of a function �(z, T (P ))
is chosen by the evaluator to reflect some property of the evaluated data. A
generic form used in this work for illustration purposes is:

� ⌘ �(z, T (P )) ⌘ T (P )�D, (10)
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• Bayes’ theorem with arbitrary constraints: 𝚲 = 𝚲 𝛿 /, 𝚫/, 𝑧 , 𝑪
𝜆 = 𝜆 𝛿 /, 𝚫/, 𝑧 , 𝑪

• GLS is recovered, i.e., 𝑋! → 𝜒!, for Λ = 𝜆 = 0) ← (Δ"= 𝛿 " = 0 .
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Metropolis Hastings Monte Carlo (MHMC) Algorithm
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Analytical solutions: Linear models
• The upper plot shows the 

perfect (within statistical 
uncertainty) agreement 
between the analytical 
and MHMC values for ⟨𝑧⟩′
and 𝛿 "

• The lower plot shows that 
the difference between 
the analytical and MHMC 
⟨𝑧⟩′ is not > 0.06% for 
any element of 𝑧

• Diagonal of 𝑪’ matches analytical to 
within < 0.6%, off-diagonal requires more 
iterations

• 𝚫’ matches well throughout

𝑇 𝑃 = 𝑃#𝑥 + 𝑃!
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Comparison to GLS
• Case Λ = Δ: solves for 𝚫" = 𝚫/𝟐 and ⟨𝜹⟩′ = ⟨𝜹⟩/𝟐 by using Λ = Δ and 𝜆 = 0
• Case Λ → 0: solves for 𝚫" = 𝟎 and ⟨𝜹⟩′ = 𝟎 by using Λ → 0 and 𝜆 → 0 (matches GLS)
• Demonstrates the effect of the GLS assumption: ⟨𝛿⟩′ = 0, Δ′ = 0
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Application to RRR evaluation: U-233

• Fit 3 resonances allowing the 
energy eigenvalues and neutron 
widths to vary

• The explicit application of 𝛿! =
0 gives the evaluator control over 
model/data defects (background, 
normalization, etc.)

• Uncertainty on model now 
envelopes the data
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Uncertainty analysis: covariance and beyond
• 6 resonance parameters
• ~30,000 posterior sets make up PDF
• Posterior PDFs compared to GLS (black) and prior 

(black-dashed) PDFs
• Instead of storing covariance, store posterior sets
• All PDFs are positively skewn (blue)

(Assuming 1000 sets)
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0.408

0.192
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Considerations

• BMC evaluation is a tool to address:
– Imperfect data & models
– non-linear models, 
– non-normal PDFs

• fitAPI implementation validated with analytical solutions for linear 
models

• New posterior PDFs may need new storage formats to allow 
storage of non-normal PDFs 
– Storing posterior sets allows for: variance, covariance, skewness, etc.
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