

The impact of FENDL-3.2 on ITER and FNSF fusion reactor computational benchmarks

Tim Bohm

With collaborations from IAEA-FENDL and INDEN Project: A. Trkov, R. Capote, G. Schnabel

> U.S. National Nuclear Data Week/CSEWG Meeting Online November, 2021

1

Outline

- 1) Introduction
- 2) Nuclear data libraries examined
- 3) Benchmark/Systems Analyzed:
 - ITER-1D computational benchmark
 - FNSF-1D computational benchmark
- 4) Future Work

Current D-T Fusion Experiments/Reactors

D + T -> He-4 (3.5 MeV) + n (14.1 MeV)

JET (UK)

- 1983-present
- R_{major}=3 m
- Vol_{plasma}=100 m³
- pulse ~1 sec
- $\bullet 16 \ MW_{fusion}$

ITER (France)

- under construction
- R_{major}=6 m
- Vol_{plasma}=840 m³
- pulse ~400-600 sec
- •500 MW_{fusion}

Soon, maybe? private start-ups (not all D-T or Tokamak based)

- Helion, Common Wealth Fusion, General Fusion, TAE Technologies
- Several others

Important Fusion Neutronics Responses

Neutron flux/fluence

• structure, magnets

Total nuclear heating (neutron+photon)

- coolant system design, thermal stress, etc. for structure, magnets
- Tritium production (neutron)
 - breeding fuel, environmental concerns
- Radiation damage/dpa (neutron)
 - structural material, magnet degradation
- Helium production (neutron)
 - re-weldability
- Radiation dose (neutron+photon)
 - insulators, electronics, personnel
- Activation
 - shutdown dose-maintenance robotics, personnel
 - decay heat-safety (LOCA, LOFA)
 - radioactive waste disposal, recycling

Tritium production in FNSF breeding channel

FENDL Library

- The Fusion Evaluated Nuclear Data Library (FENDL) is an international effort coordinated by the IAEA Nuclear Data Section
- Assembles a collection of the best nuclear data from national cross section data libraries for fusion applications
 - ENDF/B (US), JENDL (Japan), JEFF (Europe), TENDL (EU), RUSFOND/BROND (Russia)
- Process uses **fusion specific** experimental and calculational benchmarks to evaluate the data
- Data available on-line:

Source of FENDL Data

- 65/180 isotopes in FENDL-3 come from ENDF/B-VII.1
 > See Table 1 in INDC(NDS)-0628
- Some key isotopes for this work:

Isotope	FENDL-2.1*	FENDL-3.1	FENDL-3.2
H-1	JENDL-3.3	ENDF/B-VII.1	ENDF/B-VII.1
0-16	ENDF/B-VI.8	ENDF/B-VII.1	INDEN1.0/Murata et al.**
Cr-52	ENDF/B-VI.8	ENDF/B-VII.1	INDEN?/Nobre et al.**
Fe-56	JEFF-3	JEFF-3.1.1	INDEN1.0/IAEA consort.**
Ni-58	JEFF-3	ENDF/B-VII.0	ENDF/B-VII.0
Cu-63,65	ENDF/B-VI.8	ENDF/B-VII.0	ENDF/B-VII.0

*FENDL-2.1 is the reference library for ITER neutronics **INDEN https://www.nds.iaea.org/INDEN/

Goal of this work

standard MCNP id

- Look at the neutronics impact of using the updated neutron libraries in a realistic model of fusion systems using MCNP
- Libraries examined:
 - <u>Neutron:</u>
 - 1. FENDL-2.1 (21c)
 - 2. FENDL-3.1 (31c)-current version 3.1d
 - 3. Initial INDEN evaluations for O, Cr, Fe*
 - 4. FENDL-3.2 (32c)-june 24, 2021 version
 - Includes newer INDEN evaluations for O, Cr, Fe
 - 5. ENDF/B-VII.1 (80c)
 - 6. ENDF/B-VIII.0 (00c)
 - <u>Photon:</u>
 - . mcplib84 (84p)**

Previous work has shown that mcplib84 produces results similar to the newer MCNP eprdata12 library, the latest MCNP photon library (eprdata14) has not been tested yet

* Bohm T.D, Sawan M.E. "Neutronics calculations to support the Fusion Evaluated Nuclear Data Library (FENDL)", Fusion Science and Technology, on-line early access August 2021. **Bohm T.D, Sawan M.E. "The impact of updated cross section libraries on ITER neutronics calculations", Fusion Science and Technology, Vol 68, p. 331-335, 2015.

New work

ITER 1-D Cylindrical Calculation Benchmark

- Based on an early ITER design
 Developed for the FENDL evaluation process
- Simple but realistic model of ITER with the Inboard and Outboard portions modeled with the plasma in between
- D-T fusion (14.1 MeV neutrons)
- Flux (neutron and photon), heating, dpa, and gas production calculated

M. Sawan, FENDL Neutronics Benchmark: Specifications for the calculational and shielding benchmark, INDC(NDS)-316, December 1994

ITER 1-D Cylindrical Benchmark continued

Plasma

Bohm CSEWG Meeting 2021

Results: Neutron Flux ITER

• ENDF/B-VIII.0+CrInitial, Felnitial closer to FENDL-2.1 but see structure at VV, TF Coil

- main difference due to Ni and Cu XS respectively
- FENDL-3.1+CrInitial, Felnitial quite close to FENDL-2.1 but structure at VV (Ni)
 FENDL-3.2 even closer to FENDL-2.1

Bohm CSEWG Meeting 2021

Results: Total Nuclear Heating ITER

neutron heating up to 4X>photon heating in water regions

Neutron Heating Numbers in Water

Bohm CSEWG Meeting 2021

ISCONSIN

1-D FNSF Cylindrical Computational Benchmark

Need to test XS libraries on fusion designs other than ITER (different structural materials, coolants)

Created 1-D model of Fusion Energy Systems Studies Fusion Nuclear Science Facility (FESS-FNSF)

Breeding Zone: He cooled steel structure (90 w/o Fe, 7.5w/o Cr, 2w/o W, 0.2w/o V), PbLi breeder

- Includes IB, OB magnet and cryostat
- MCNP materials created with PyNE

T. Bohm et al. "Initial Neutronics Investigation of a Liquid Metal Plasma Facing Fusion Nuclear Science Facility, *Fusion Science and Technology*, 2019.

Results: Neutron Flux FNSF

- All libs show higher flux than FENDL-2.1 (except FENDL-3.2 at OB CC, WP)
- FENDL-3.1d shows highest flux (also seen in ITER benchmark)
- ENDF/B-VIII.0 & FENDL-3.2 quite close up to depth of IB LTshield and OB VV
- FENDL-3.2 vs FENDL-3.1d flux values 6% lower at IB CC, 15% lower at OB CC

Results: Total Nuclear Heating FNSF

• All libs show higher heating than FENDL-2.1 beyond the Breeder except FENDL-3.2 at OB WP (not seen in the ITER benchmark)

Bohm CSEWG Meeting 2021

WISCONSIN

- All newer libs show some significant differences esp. at deep locations (LT, CC,WP
 FENDL-3.2 peaks are in BZ channel walls, BW, OB SR back plate (MF82H)

15

> FNSF uses PbLi for breeding:

- 84.3 atomic% Pb
- 15.7 atomic% Li (enriched to 90% Li-6)
- Recall 1-D model includes He cooled flow channels for the PbLi with thin SiC inserts

Library	IB TBR	Ratio	OB TBR	Ratio
FENDL-2.1	0.4016	1	0.9992	1
ENDF/B-VIII.0	0.4076	1.015	1.0168	1.017
FENDL-3.1d	0.4070	1.013	1.0173	1.018
FENDL-3.2	0.4065	1.012	1.0154	1.016

Max. relative error <0.01%

- TBR ~1.2-1.8% higher than that calculated with FENDL-2.1
- Newer libraries are quite close to each other

Future Work

Plot dpa, He production, T production results (for both benchmark models)

- already calculated but not plotted and studied in detail
- Dig into differences of heating in FNSF model
- Add more resolution for heating tallies

Backup slides

Results: Photon Flux FNSF

• Peaks are BZ channel walls, BZ SiC channel liners

THE UNIVERSITY WISCONSIN MADIS ON

Results: Photon Heating FNSF

• Valleys are in PbLi

• FENDL-3.2 peaks are in BZ channel walls, BW, OB SR back plate (MF82H)

UW Neutronics Capabilities (3-D)

- DAGMC (detailed 3-D CAD based Monte Carlo transport)
 - Transports directly in the CAD model (not a translator)
 - Handles complex surfaces without simplification
 - Couples to MCNP, Geant4, FLUKA, SHIFT, OpenMC
 - Provides a common domain for coupling to other analysis
 - http://fti.neep.wisc.edu/ncoe/
 - <u>http://github.com/svalinn</u>
- 3-D CAD model based analysis:

ITER BM08

4

2

Nuclear heating mapped to ANSYS mesh for thermal analysis

