

Summary: Technical Meeting on (alpha,n) data evaluation and data needs

8-12 November 2021, Virtual

Paraskevi (Vivian) Dimitriou
Nuclear Data Section,
Division of Physical and Chemical Sciences
IAEA

Technical Meeting on (alpha,n) data evaluation and data needs, 8-12 Nov 2021

Goals:

- Review status of measurements, models and evaluations and ongoing projects
- Identify data needs: measurements, model and code development, and evaluations
- Compile list of priorities
- Recommendations to IAEA

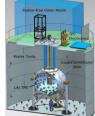
Technical Meeting on (alpha,n) data evaluation and data needs, 8-12 Nov 2021, cont'd

- Participants: registered 61
- Countries: Austria, Belgium (EU), China, France, Germany, Greece, Italy, Japan, Portugal, Russia, Spain, UK, USA
- Applications: low-background rare-event experiments, nuclear astrophysics, fusion, nonproliferation, reactor applications

Applications I

- Low-background rare-event experiments:
 - Neutrino experiments: reactor- and geo-antineutrinos, neutrinoless ββ-decay, CP violation, solar neutrinos, SNe neutrinos, Exotic physics)

Dark Matter (WIMPs): low-energy nuclear recoils (10s keV)

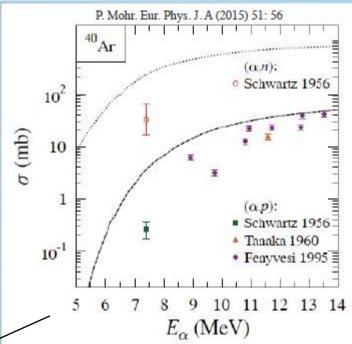

DAMA (LNGS), ANAIS (LSC), COSINE (Yangyang), SuperCDMS (SNOLAB), CRESST (LNGS), DarkSide, XENON (LNGS), LZ (SURF), nEXO, PICO, SNO+

(alpha,n) WG: Snowmass2021 - LOI, White Paper

 Nuclear Astrophysics: s process neutron source 13C(alpha,n), T~90 MK, E = 140-230 keV

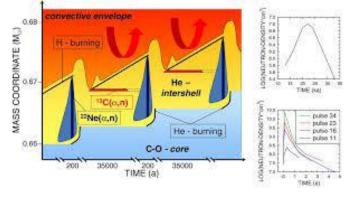
Applications I cont'd

- Signal vs background competition:
 - $-\beta,\gamma$: shielding+discrimination
 - Muons: underground+veto
 - production of neutrons (mimic v's, WIMPs...):
 - external sources (cosmogenic, rock, distant materials): passive+active shielding !!! Not valid for huge caverns in experiments like Dune
 - Detector materials:
 - spont. Fission (high-Z materials),
 - (alpha,n) (low-Z materials)
 - alpha sources: U & Th chains in target material, detector structure, Rn emanation and ingress, ²¹⁰Po


Typical elements

- detector material → require accurate cross sections (<9 MeV) and neutron spectra (stopping powers 2nd order effect)
 - Acrylic: C, O
 - Teflon: C, F
 - PCB: C, N, O
 - Water: O (170 and 180)
 - Resistors: Al, N, B (+Si, Mg...)
 - Mechanical parts: Cu, Ti, Stainless Steel
 - Wires: Be
 - Target: Ar, Xe, Ge, Li
- Rock/shotcrete: next generation (e.g. Dune)
 - O, Si, H, Al, Mg, K, Fe, Na, Ca

Typical elements


- detector material → reconsections (<9 MeV) and reconsections (stopping powers 2nd ore
 - Acrylic: C, O
 - Teflon: C, F
 - PCB: C, N, O
 - Water: O (170 and 180)
 - Resistors: AI, N, B (+Si, I
 - Mechanical parts: Cu, Ti, Stainless Steel
 - Wires: Be
 - Target: Ar, Xe, Ge, Li
- Rock/shotcrete: next generation (e.g. Dune)
 - O, Si, H, Al, Mg, K, Fe, Na, Ca

Applications II

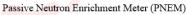
- Nuclear Astrophysics (s process, weak r-process, alpha process/I process)
 - Accurate knowledge of neutron source reaction rates down to very low energies (100s keV) - reaction networks –abundances
 - R-matrix fits extrapolation to low energies (Gamow window):
 need to know resonances (Jpi): non-selective reactions

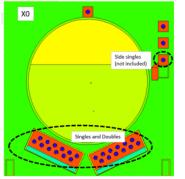
Typical reactions (s process):
¹³C(alpha,n)
LUNA (GS), Notre Dame, Ohio U

²²Ne(alpha,n), ²²Ne(alpha,γ) indirect: nTOF, TAMU, etc

¹⁷O(alpha,n), ¹⁷O(alpha,γ) Notre Dame, DRAGON/TRIUMF

Applications III


- Fusion (accurate accounting of alpha-losses – require alpha monitoring and measurements)
 - Aneutronics: real-time and per-pulse measurements (FILD, GRAM)
 - Activation foil approach (complementary): γ-signal vs ninduced γ's
 - Scoping study: Bonheure et al., Fus. Des. 88 (2013) 533
 - alpha-library needed in absence of data
 - Measurements to validate: ~1-3.5 MeV
 - Validation via 14 MeV neutron and 3.5 MeV alpha experiments


For D-T alphas	Thresholds (Me)
$^{10}B(\alpha,n)^{13}N$	_
$^{14}N(\alpha,g)^{18}F$	-
19 F(α ,n) 22 Na	2.4
25 Mg(α ,p) 28 Al	1.4
40 Ca $(\alpha,p)^{43}$ Sc	3.9
41 K(α ,n) 44 Sc	3.7
41 Ca(α ,p) 44 Sc	2.4
43 Ca(α ,p) 46 Sc	1.7
$^{44}Ca(\alpha,p)^{47}Sc$	2.2
45 Ca(α ,p) 48 Sc	1.3
45 Sc(α ,n) 48 V	2.4
46 Ca(α ,p) 49 Sc	1.6
$^{48}\text{Ti}(\alpha, n)^{51}\text{Cr}$	2.9
$^{51}V(\alpha,n)^{54}Mn$	2.4
53 Cr(α ,p) 56 Mn	3.5
55 Mn(α ,n) 58 Co	3.8
76 Ge(α ,n) 79 mSe	3.1

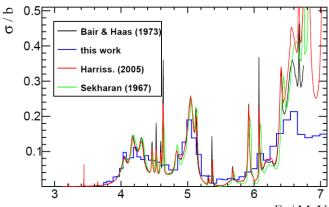
Applications IV

- Nonproliferation (UF6 enrichment, spent fuel safeguards, passive NDA, neutron source characterization)
 - Recommendations from an (alpha,n) Nuclear Data Scoping Study (presented by C. Romano)
 - Priorities (cross-cutting):
 - SOURCES4C code modernization
 - Evaluation of F, O, C (alpha,n)
 - F thick target integral and activation experiments;
 n, γ spectra measurements; thin target energy-differential cross-section measurements
 - ENDF database modernization, GNDS format
 - · Processing code updates

D.P. Broughton, S. Croft, C. Romano, A. Favalli, "Sensitivity of the simulations of passive neutron emission from UF₆ cylinder to the unin both ${}^{\rm in}F(\alpha,n)$ energy spectrum and thick target yield of ${}^{224}{\rm U}$ in UF₁. United States. https://doi.org/10.1016/j.nima.2021.165485

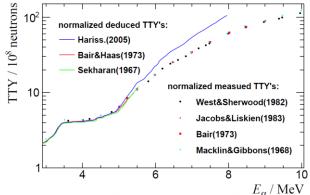
Strong overlap with all other application needs

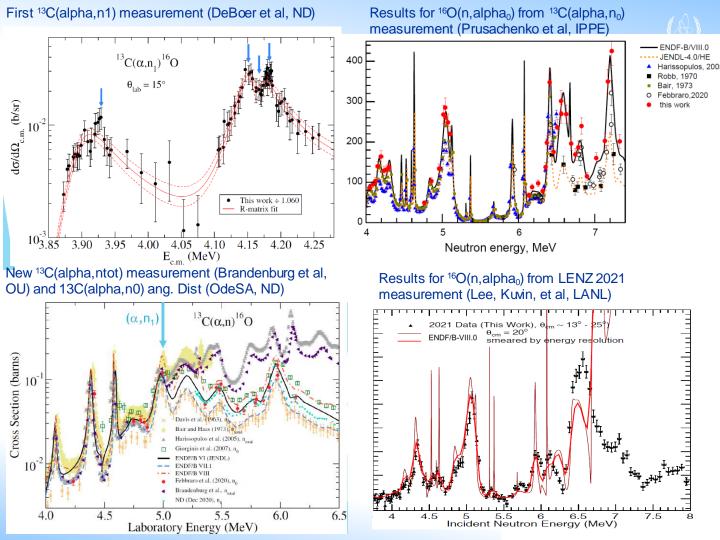
Applications V

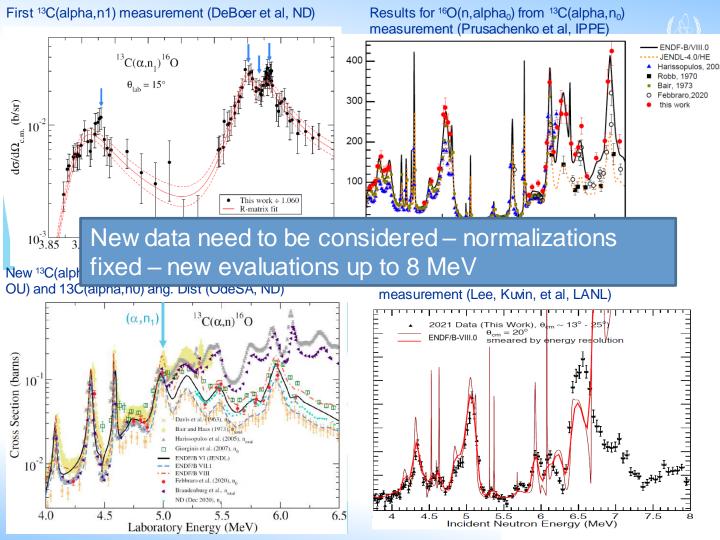

- Reactor operations and safeguards (core calculations, neutron leakage, etc)
 - Dedicated session: ¹⁷O system (n+¹⁶O)
 - New evaluation of ¹⁷O (Chen-Tsinghua Univ.)
 - Ongoing evaluation of ¹⁷O (LANL)
 - New measurements: ¹⁶O(n,alpha₀) (GELINA) (2.35-9 MeV)renormalization of all data (4.0-5.3 MeV – below inelastic threshold) – above 5 MeV renormalization to West&Sherwood TTY
 - New measurements: ¹³C(alpha,n_{tot}) (Ohio U); ¹³C(alpha,n_{1,2}) (Notre Dame); ¹³C(alpha,n₀) (IPPE)

S. Urlass (GELINA):

Cross section renormalization of ${}^{13}C(\alpha,n)$ data


- using detailed balance to transform $^{13}\text{C}(\alpha, n)$ to $^{16}\text{O}(n, \alpha)$ data
- normalization region between 4.0-5.3MeV


0.87 · Bair & Haas 1.30 · Harissopoulos, 1.37 · Sekharan


$^{13}C(\alpha,n)$ cross section normalization to thick target yield

- normalization between 3.5-5MeV to West & Sherwood's TTY
- below 5MeV: ${}^{13}C(\alpha,n) = {}^{13}C(\alpha,n_0)$

0.85 · Bair & Haas , 1.27 · Harissopoulos, 1.35 · Sekharan

Evaluations, Application codes

 New 170 (Tsinghua Univ.) and alpha+9Be (CEA-Cadarache) evaluations

- Application codes:
 - SOURCES4A (Univ. Sheffield)
 - NEUCBOT (Princeton)
 - SAG4N (CIEMAT)

(alpha,n) data needs

 Measurements: thin-target differential cross section measurements (total and partial), ang. distributions, neutron and gamma spectrum, reference data for rel. measurements (exhaustive and top priority tables)

In preparation: Tables of priority measurements incl. required precision

- Models:
 - A<20: extension of standard R-matrix codes to deal with increasing # of channels incl. breakup (reduced R-matrix, Faddeev-based or Hyperspherical approach for BU)
 - A>20: recommended Hauser-Feshbach ingredients; n-gamma correlations
- Evaluations: updated (alpha,n) evaluated libraries not limited to a few isotopes, including cross sections to excited states (partial)
- Application codes: SOURCES4C (orphan)/4A, NEUCBOT, SAG4N will benefit from improved evaluated (alpha,n) libraries

Table of priorities in (alpha,n) data measurements

Isotope	Reactor operation/safeguards		Nonproliferation, waste management		Low-background experiments (rare event detection)		Nuclear astrophysics		Fusion	
	Energy&	Type of	Energy&	Type of data	Energy&	Type of data	Energy&	Type of data	Energy&	Type of
	resolution	data	resolution		resolution		resolution		resolution	data
9Be			>4 MeV,	xs (tot,part,angdi s)						
13C	<9 MeV	xs (tot,part, angdis)	1-4 MeV, >5 MeV	xs (tot) xs (tot,part)	1-9 MeV, 10- 20%	xs (tot, part, n- gamma correl., n,gamma spectra)	As low as possible, probably towards 100 keV	xs		
170			<8 MeV	xs (tot,part)			>1 MeV for TNSe	xs		
180			<8 MeV	xs (tot,part)	0.5-9 MeV, 20- 30%	xs (tot, part)	>1 MeV for TNSe	xs		
19F			<9 MeV	Tot,part,angdi s,n spect, tty	<9 MeV	xs(tot, part)			Potential candidate	
40Ar					<9 MeV	xs (tot)				

International Nuclear Data Evaluation Network on Light Elements (INDEN-LE)

Light Elements (INDEN-LE):

Improving evaluated nuclear reaction data on light-elements for energy and non-energy applications

Charged-particles

Intercomparison of R-matrix codes, extension of R-matrix theory to treat increasing # of open channels, break-up channels, evaluation methodology, (alpha,n) reactions

Neutrons

Evaluation of n+9Be, n+14,15N, n+16O, n+23Na

- (alpha,n) reactions
 - Evaluation of n+¹⁶O incl. ¹³C(alpha,n)
 - Evaluation of ¹⁹F(alpha,n)
 - Evaluation of alpha+^{17,18}O

https://www-nds.iaea.org/index-meeting-crp/CM-INDEN-LE/

Perspectives

- Meeting report published INDC(NDS)-0836
- Follow-up activities on specific topics (reference reactions/monitor beams/targetry, HF calculations, evaluations for priority nuclides)
- Collaboration with international and national efforts:
 - (alpha,n) particle-physics Working Group (Snowmass LOI - White Paper)
 - MANY experimental campaign (Spain: Madrid, Seville; BELEn, MONSTER n detectors)
 - US university groups -> underground (LUNA, SURF)

Thank you!

