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OVERVIEW
• 233U
– Motivation: underestimated reactivity for critical assemblies
– Status: updates to PFNS, thermal constants, R-matrix improved subset of benchmarks1
– RRR: extension up to 2 keV and inclusion of possible newly measured capture data
– URR: relevant to assess impact on benchmark calculations in the energy range 2–40 keV

• 235U
– Motivation: investigation on reactivity rates related to depletion calculations
– Status: 238U evaluation (see Capote/Trkov presentation) affecting the burn-up trend
– URR: updated evaluation by including recently measured fission data

• 239Pu
– Motivation: R-matrix analysis to include TNC values (STD 2017) and PFNS (IAEA+LANL)
– Status: partial work to extend RRR up to 5 keV
– Neutronmultiplicities: updated evaluation with fluctuations and related covariances in progress

1Annals Nuclear Energy 163 (2021) 108595.
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U(nresolved) R(esonance) R(egion) ANALYSIS OF 235U
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Figure 1: Preliminary SAMMY/FITACS fit of available total, fission, and capture data sets. Elastic channel computed by difference and inelastic channel parameterized
by neutron strength functions and energy scaled penetrability factors.

• Except for the inelastic channel (11%), scaling factors ranging up to 6%

• Except for fluctuations, reasonable agreement with ENDF/B-VIII.0 (file 3)

• 20 keV is an acceptable upper energy limit for URR fit to account for self shielding effects
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Figure 2: Preliminary SAMMY/FITACS fit compared to ENDF/B-VIII.0 evaluated data (file 3).

• ENDF/B-VIII.0 evaluated data show fluctuating behavior (to be checked if there is formal consistency between
file 2 and file 3)

5



U(nresolved) R(esonance) R(egion) ANALYSIS OF 235U

8

10

12

14

16

18

20

22

10+0 10+1 10+2

Elastic

To
ta
lc

ro
ss

se
ct
io
n
(b
)

Incident neutron energy (keV)

ENDF/B-VIII.0

0

2

4

6

8

10

12

14

16

18

10+0 10+1 10+2

Fi
ss

io
n
cr
os

s
se

ct
io
n
(b
)

Incident neutron energy (keV)

ENDF/B-VIII.0

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

10+0

10+0 10+1 10+2

In
el
as

tic
cr
os

s
se

ct
io
n
(b
)

Incident neutron energy (keV)

ENDF/B-VIII.0
Present( 0.897)

Figure 3: Preliminary SAMMY/FITACS fit compared to ENDF/B-VIII.0 evaluated data (file 3).

• Inelastic channel deviates from ENDF/B-VIII.0 below ≈10 keV

• µbarn should have no impact on criticality!

• Next step is the inclusion of fluctuations! (Resonance parameters ⇒ fit ⇒ effective/theoretical cross sections)
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NEUTRON MULTIPLICITIES: On the (((nnn,,,γγγ fff ))) reaction
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Figure 4: Schematic diagram of the (n,γ f ) reaction (Lynn 1965). After the emission of a primary γ-ray (e.g. E1, M1,..), the compound nucleus may still be in a highly
excited state that may decay by fission as an alternative to secondary γ-ray emission. In the two-stage decay, the compound nucleus can be in an intermediate state that
differs from the initial state depending on the multi-polarity of the transition.
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NEUTRONMULTIPLICITIES: Calculating spin effect and (((nnn,,,γγγ fff )))

• Fluctuating behavior of prompt neutrons based on the competition of (n,γ f ) and direct fission (n, f ) processes3

• Neutron multiplicity ν̄p(E) = νspin(E)−∆ν (n,γ f )(E) defined by

νspin(E) =

[
∑
J

νc,J ∑
kJ

σ f ,kJ(E)
]
/σ f (E) (1)

∆ν (n,γ f )(E) =

[
∑
J

CJ ∑
kJ

σ f ,kJ(E)/Γ f ,kJ

]
/σ f (E) , (2)

where the quantities νc,J and CJ are deduced by a least-squares of the measured data.
• The resonance fission widths Γ f ,kJ for each level Eλ are used to calculate the partial energy-dependent fission
cross section σ f ,kJ(E):

- The coefficients CJ = (∂νJ/∂E)Γγ, f ·Eγ, f are deduced from the linear dependence of ν̄p for the direct process, assuming that Γγ, f ,
Eγ, f are constant due to the large number of independent channels involved.

- For 239Pu (having spins J = 0+,1+), the parameters used in the calculations are four νc,0+, C0+ and νc,1+, C1+

3Fort et al., NSE 99,375 (1988).
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NEUTRON MULTIPLICITIES OF 239Pu

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

0 20 40 60 80 100

Pr
om

pt
ν̄

Incident neutron energy (eV)

Ryabov (fitted)
Weston

Weinstein
Present

2.70

2.75

2.80

2.85

2.90

2.95

3.00

6 7 8 9 10 11 12 13 14 15

Pr
om

pt
ν̄

Incident neutron energy (eV)

Ryabov (fitted)
Weston

Weinstein
Present with uncertainty

Figure 5: Preliminary fit of neutron multiplicities with available measured data and related covariance matrix.

• Measured data with different resolutions. Ryabov seems the most consistent

• As expected the correlation matrix reflects the ν̄ fluctuating behavior

• To reduce size of covariance matrix, energy grid properly defined around each energy level

• Calculated uncertainty is about ≤0.3%
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NEUTRON MULTIPLICITIES OF 239Pu
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Figure 6: Preliminary fit of neutron multiplicities with available measured data and related covariance matrix.

• Measured data with different resolutions. Ryabov seems the most consistent

• As expected the correlation matrix reflects the ν̄ fluctuating behavior

• To reduce size of covariance matrix, energy grid properly defined around each energy level

• Calculated uncertainty is about ≤0.3%
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