

# TN update plans and advances for <sup>16</sup>O and <sup>9</sup>Be

Cross Section Evaluation Working Group Evaluations Committee G. Hale & M. Paris (LANL/T-2)

2021-11-18

LA-UR-21-31398



## Outline

- Thermonuclear/charged-particle evaluation updates
- n+9Be status & plans
- n+16O progress report



## **Thermonuclear/charged-particle reactions** *Detailed in earlier Charged-particle session 2021-11-17*

#### • Evaluation updates & new evaluations

- -p-001\_H\_001.endf
- -p-002\_He\_004.endf
- -d-001\_H\_003.endf
- -d-002\_He\_003.endf
- -d-003\_Li\_006.endf
- -t-002\_He\_004.endf
- -a-006\_C\_013.endf



## n+<sup>9</sup>Be evaluation



## Light-element R-matrix evaluation *R-matrix formalism*





## n+<sup>9</sup>Be New evaluation

• Added data: elastic,  $(n,\alpha)$ ,  $(n,n_1)$ 

| Ch                                                         | nannel                              |                    | $a_c(\mathrm{fm})$                                 | $\ell_{ m max}$    |                      |
|------------------------------------------------------------|-------------------------------------|--------------------|----------------------------------------------------|--------------------|----------------------|
| $\mid n+$                                                  | $-{}^{9}\text{Be}(\frac{3}{2}^{-})$ |                    | 4.67                                               | 3                  |                      |
| $ ^{4}$ H                                                  | ${ m e}+{}^{6}{ m He}(0^{+})$       |                    | 5.00                                               | 4                  |                      |
| (n)                                                        | $n)_0 + {}^8\text{Be}(2^+)$         |                    | 5.20                                               | 3                  |                      |
| n -                                                        | $+{}^9	ext{Be}^*(rac{5}{2}^-)$     |                    | 5.20                                               | 1                  |                      |
| Process                                                    |                                     | $E_n$ range        | Observables                                        | s $N_{\rm dat}$    | $\chi^2/N_{\rm dat}$ |
| $^{9}\mathrm{Be}(n,n_{0})^{9}\mathrm{Be}$                  | (1.25  eV)                          | , 15.4  MeV)       | $\sigma_{ m tot}, \sigma, \sigma(	heta), A_{ m g}$ | $y(\theta) = 5782$ | 1.65                 |
| ${}^{9}\mathrm{Be}(n, {}^{4}\mathrm{He}){}^{6}\mathrm{He}$ | (0.6                                | (3, 8.5)  MeV      | $\sigma, \sigma(	heta)$                            | 178                | 1.40                 |
| ${}^{9}\mathrm{Be}(n,2n){}^{8}\mathrm{Be}$                 | (1.8)                               | (, 14.7)  MeV      | $\sigma$                                           | 40                 | NA                   |
| $^{9}\mathrm{Be}(n,n_{1})^{9}\mathrm{Be}^{*}$              | (2.                                 | $7, 5.0) { m MeV}$ | $\sigma(	heta)$                                    | 83                 | 1.65                 |
| Total                                                      |                                     |                    |                                                    | 6083               | 1.75                 |



## n+9Be Integrated Cross Sections





## <sup>9</sup>Be(n,n)<sup>9</sup>Be Differential Cross Sections









# <sup>9</sup>Be(n,n<sub>1</sub>)<sup>9</sup>Be<sup>\*</sup> Differential Cross Sections



#### Summary of new evaluation:

- <sup>10</sup>Be analysis has produced a consistent set of cross sections and angular distributions that are in agreement with most of the experimental data at energies up to 5 MeV. Extensions above that energy were based on the experimental data alone.
- Level assignments for the overlapping resonances near  $E_n=2.7$  MeV have the opposite parity  $(4^-, 3^+ \rightarrow 4^+, 3^-)$ .
- Excited states of <sup>9</sup>Be make important contributions to the (n,2n) cross section (MT=16 → 24 in the new evaluation).
- Testing/benchmarking: (M. Herman, LANL) and thick-target angular neutron yields (Y. Danon, RPI) on the following slides



## Comparison to previous ENDF/B Integrated cross sections





#### Testing/benchmarks Pencil-beam study

• K. Parsons/LANL



5 MeV Neutron Inelastic Scattering on Be9



## Testing/benchmarks Lab spectra

• Theoretical model expectation (G. Hale/LANL)



*Lab* elastic diff. scattering cross section *excitation function* (b/sr) at 26° as a function of E, the incident lab neutron energy (MeV).



Outgoing neutron TOF spectrum at 26° vs. t= 2236/sqrt(E) in ns. Incident energy (top axis), the first two resonances give structures at about 2400 and 2800 ns.



## Testing/benchmarks Lab spectra







Outgoing neutron TOF spectrum at 26° vs. t= 2236/sqrt(E) in ns. Incident energy (top axis), the first two resonances give structures at about 2400 and 2800 ns.



#### Testing/benchmarks Pulsed Be spheres



- MCNP simulations (D. Neudecker/LANL)
  - Due to change (n,2n) & (n,n') evident near elastic peak
  - (n,2n) should probably be (has not been) reduced by (n,n')



## **Perturbative criticality study**

M. Herman & W. Haeck (LANL)

#### Reaction: Be9 ( n, elastic )

121 experiments with absolute change  $>10.0~{\rm pcm}$ 

St. Deviation Old: 1111 pcm

| St. Deviation New: 1172 pcm  | Benchmark Name         | Diff. | Old   | New   | Benchmark Name         | Diff. | Old   | New   | Benchmark Name         | Diff. | Old New         |
|------------------------------|------------------------|-------|-------|-------|------------------------|-------|-------|-------|------------------------|-------|-----------------|
| Sti Doriation from fife poin |                        | (pcm) | (pcm) | (pcm) |                        | (pcm) | (pcm) | (pcm) |                        | (pcm) | (pcm) (pcm)     |
| Average Bias Old: -571 pcm   | HEU-MET-FAST-005-002   | -86   | -288  | -374  | HEU-MET-FAST-094-002   | -59   | 261   | 202   | U233-SOL-INTER-001-005 | -115  | -1767 - 1882    |
| A                            | HEU-MET-FAST-005-003   | -129  | -4    | -133  | HEU-MET-MIXED-012-001  | -17   | 505   | 488   | U233-SOL-INTER-001-006 | -31   | -1540 $-1571$   |
| Average Blas New: -678 pcm   | HEU-MET-FAST-005-004   | -148  | -600  | -748  | MIX-MET-FAST-004-001   | -30   | 46    | 16    | U233-SOL-INTER-001-007 | -93   | -2016 $-2109$   |
|                              | HEU-MET-FAST-005-005   | -74   | -19   | -93   | MIX-MET-FAST-004-002   | -16   | -68   | -84   | U233-SOL-INTER-001-009 | -60   | -2298 $-2358$   |
|                              | HEU-MET-FAST-005-006   | -41   | -172  | -213  | MIX-MET-FAST-007-001   | -179  | 79    | -100  | U233-SOL-INTER-001-010 | -66   | -2312 $-2378$   |
|                              | HEU-MET-FAST-010-001   | -40   | -133  | -173  | MIX-MET-FAST-007-002   | -175  | 567   | 392   | U233-SOL-INTER-001-011 | -32   | -2171 $-2203$   |
|                              | HEU-MET-FAST-010-002   | -21   | -202  | -223  | MIX-MET-FAST-007-003   | -146  | 423   | 277   | U233-SOL-INTER-001-012 | -189  | $-2188 \ -2377$ |
|                              | HEU-MET-FAST-016-001   | -95   | 69    | -26   | MIX-MET-FAST-007-004   | -118  | 347   | 229   | U233-SOL-INTER-001-013 | -166  | -2097 $-2263$   |
|                              | HEU-MET-FAST-016-002   | -50   | 161   | 111   | MIX-MET-FAST-007-005   | -78   | 129   | 51    | U233-SOL-INTER-001-015 | -139  | -2276 $-2415$   |
|                              | HEU-MET-FAST-017-001   | -83   | -56   | -139  | MIX-MET-FAST-007-006   | -46   | 21    | -25   | U233-SOL-INTER-001-017 | -63   | -1270 $-1333$   |
|                              | HEU-MET-FAST-030-001   | -65   | 78    | 13    | MIX-MET-FAST-007-007   | -188  | 418   | 230   | U233-SOL-INTER-001-018 | -113  | -2392 $-2505$   |
|                              | HEU-MET-FAST-038-001   | -60   | 125   | 65    | MIX-MET-FAST-007-008   | -173  | 311   | 138   | U233-SOL-INTER-001-019 | -90   | -2722 $-2812$   |
|                              | HEU-MET-FAST-038-002   | -43   | 161   | 118   | MIX-MET-FAST-007-009   | -162  | 299   | 137   | U233-SOL-INTER-001-021 | -64   | -2945 $-3009$   |
|                              | HEU-MET-FAST-041-001   | -129  | 350   | 221   | MIX-MET-FAST-007-010   | -125  | 308   | 183   | U233-SOL-INTER-001-022 | -42   | -2415 $-2457$   |
|                              | HEU-MET-FAST-041-002   | -186  | 14    | -172  | MIX-MET-FAST-007-011   | -98   | 201   | 103   | U233-SOL-INTER-001-024 | -193  | -1119 $-1312$   |
|                              | HEU-MET-FAST-052-001   | -56   | 388   | 332   | MIX-MET-FAST-007-012   | -57   | 142   | 85    | U233-SOL-INTER-001-025 | -165  | -1789 $-1954$   |
|                              | HEU-MET-FAST-058-001   | -207  | 21    | -186  | MIX-MET-FAST-007-013   | -24   | 21    | -3    | U233-SOL-INTER-001-026 | -145  | -1422 $-1567$   |
|                              | HEU-MET-FAST-058-002   | -172  | 241   | 69    | MIX-MET-FAST-007-014   | -169  | 600   | 431   | U233-SOL-INTER-001-028 | -115  | -1903 $-2018$   |
|                              | HEU-MET-FAST-058-003   | -137  | 78    | -59   | MIX-MET-FAST-007-015   | -155  | 570   | 415   | U233-SOL-INTER-001-029 | -91   | -2535 $-2626$   |
|                              | HEU-MET-FAST-058-004   | -103  | 8     | -95   | MIX-MET-FAST-007-016   | -115  | 427   | 312   | U233-SOL-INTER-001-031 | -72   | -1179 $-1251$   |
|                              | HEU-MET-FAST-058-005   | -79   | -48   | -127  | MIX-MET-FAST-007-017   | -84   | 441   | 357   | U233-SOL-INTER-001-032 | -42   | -2685 $-2727$   |
|                              | HEU-MET-FAST-059-001-s | -23   | -253  | -276  | MIX-MET-FAST-007-018   | -43   | 685   | 642   | U233-SOL-THERM-015-001 | -195  | -1354 $-1549$   |
|                              | HEU-MET-FAST-059-002-s | -15   | -221  | -236  | MIX-MET-FAST-007-019   | -104  | 542   | 438   | U233-SOL-THERM-015-002 | -168  | -1763 $-1931$   |
|                              | HEU-MET-FAST-066-001   | -183  | -208  | -391  | MIX-MET-FAST-007-020   | -71   | 370   | 299   | U233-SOL-THERM-015-004 | -61   | -1241 $-1302$   |
|                              | HEU-MET-FAST-066-002   | -147  | -285  | -432  | MIX-MET-FAST-007-021   | -25   | 431   | 406   | U233-SOL-THERM-015-011 | -195  | -1013 $-1208$   |
|                              | HEU-MET-FAST-066-003   | -125  | _     | -125  | MIX-MET-FAST-007-022   | -92   | 270   | 178   | U233-SOL-THERM-015-012 | -169  | -944 $-1113$    |
|                              | HEU-MET-FAST-066-004   | -220  | -235  | -455  | MIX-MET-FAST-007-023   | -57   | 251   | 194   | U233-SOL-THERM-015-013 | -149  | -1136 $-1285$   |
|                              | HEU-MET-FAST-066-005   | -187  | -133  | -320  | PU-MET-FAST-018-001    | -138  | -185  | -323  | U233-SOL-THERM-015-014 | -59   | -405 - 464      |
|                              | HEU-MET-FAST-066-006   | -160  | -164  | -324  | PU-MET-FAST-019-001    | -139  | 25    | -114  | U233-SOL-THERM-015-015 | -121  | -1330 $-1451$   |
|                              | HEU-MET-FAST-066-007   | -192  | -188  | -380  | PU-MET-FAST-021-001    | -109  | 353   | 244   | U233-SOL-THERM-015-016 | -101  | -1421 $-1522$   |
|                              | HEU-MET-FAST-066-008   | -218  | -201  | -419  | PU-MET-FAST-021-002    | -59   | -769  | -828  | U233-SOL-THERM-015-018 | -69   | -2831 $-2900$   |
|                              | HEU-MET-FAST-066-009   | -182  | -221  | -403  | PU-MET-FAST-038-001-d  | -162  | 24    | -138  | U233-SOL-THERM-015-019 | -46   | -2771 $-2817$   |
|                              | HEU-MET-FAST-069-001-s | -32   | -110  | -142  | PU-MET-FAST-044-003    | -67   | 89    | 22    | U233-SOL-THERM-015-020 | -200  | -807 - 1007     |
|                              | HEU-MET-FAST-070-002   | -14   | 89    | 75    | U233-MET-FAST-005-001  | -90   | -235  | -325  | U233-SOL-THERM-015-021 | -177  | -510 - 687      |
|                              | HEU-MET-FAST-084-003   | -92   | -86   | -178  | U233-MET-FAST-005-002  | -133  | -277  | -410  | U233-SOL-THERM-015-022 | -158  | -694 - 852      |
|                              | HEU-MET-FAST-084-016   | -55   | -108  | -163  | U233-SOL-INTER-001-001 | -192  | -1816 | -2008 | U233-SOL-THERM-015-023 | -131  | -893 $-1024$    |
|                              | HEU-MET-FAST-084-026   | -55   | 60    | 5     | U233-SOL-INTER-001-002 | -162  | -2230 | -2392 | U233-SOL-THERM-015-024 | -112  | -1186 $-1298$   |
|                              | HEU-MET-FAST-084-027   | -59   | -229  | -288  | U233-SOL-INTER-001-003 | -142  | -2137 | -2279 | U233-SOL-THERM-015-026 | -172  | -840 -1012      |
|                              | HEU-MET-FAST-094-001   | -71   | 206   | 135   | U233-SOL-INTER-001-004 | -64   | -889  | -953  | U233-SOL-THERM-015-027 | -153  | -399 - 552      |
|                              |                        |       |       |       |                        |       |       |       | U233-SOL-THERM-015-028 | -134  | -582 -716       |
|                              |                        |       |       |       |                        |       |       |       | U233-SOL-THERM-015-029 | -110  | -697 - 807      |
|                              |                        |       |       |       |                        |       |       |       | U233-SOL-THERM-015-030 | -87   | -777 - 864      |
|                              |                        |       |       |       |                        |       |       |       | U233-SOL-THERM-015-031 | -51   | -870 - 921      |
|                              |                        |       |       |       | •                      |       |       |       |                        |       |                 |



## Krusty testing J. Favorite (LANL/XCP-7)

| Case<br>keff |   | Benchmark | ENDF/B-VII.1 | ENDF/B-VIII.0 | ENDF/B-VIII.1 |
|--------------|---|-----------|--------------|---------------|---------------|
|              | 1 | 1.00065   | 1.00315      | 1.00043       | 1.00259       |
|              | 2 | 1.00345   | 1.00597      | 1.00325       | 1.00551       |
|              | 3 | 1.00017   | 1.00291      | 1.00017       | 1.00240       |
|              | 4 | 1.00048   | 1.00300      | 1.00033       | 1.00250       |
|              | 5 | 1.00189   | 1.00441      | 1.00174       | 1.00393       |
| C–E          |   |           |              |               |               |
|              | 1 |           | 0.00250      | -0.00022      | 0.00194       |
|              | 2 |           | 0.00252      | -0.00020      | 0.00206       |
|              | 3 |           | 0.00274      | 0.00000       | 0.00223       |
|              | 4 |           | 0.00252      | -0.00015      | 0.00202       |
|              | 5 |           | 0.00252      | -0.00015      | 0.00204       |

"Krusty detailed models compared with the benchmark, ENDF/B-VII.1, and ENDF/B-VIII.0. We nailed it with ENDF/B-VIII.0. The new cross sections are a little better than ENDF/B-VII.1 but not nearly as good as ENDF/B-VIII.0."



## n+<sup>16</sup>O evaluation

#### ENDF/B history 6.8, 7.1, 8.0

- ENDF/B-VI.8 (2001 April): LANL(Chadwick, Hale, Young), KAPL(Caro, Lubitz)
  - Below 3.4 MeV\*: R-function + optical model (OPTIC code; Caro)
  - $3.4 < E_n < 6.25$ : LANL R-matrix (multichannel; EDA)
    - Data: n<sup>+16</sup>O (total) [Johnson75, Larson80], <sup>16</sup>O(n,el) ang.[Lane60,...], <sup>16</sup>O(n, $\alpha_0$ ) [inverse Walton et al.], <sup>13</sup>C( $\alpha$ ,n), <sup>13</sup>C( $\alpha$ ,el) excit. fn
  - $-E_n > 6.25$ 
    - 6.25  $\rightarrow$  20: subtraction of non-elastic (MT=3) from total
    - Inelastic (MT51, ..., 57)
      - <sup>16</sup>O(n,x $\gamma$ ) Nelson, Chadwick, Michaudon & Young NSE99
  - MT800: Bair&Haas73 without renormalization
    - 6.2 $\rightarrow$ 20: factor of 1.5 "bring into rough agreement" (n, $\alpha_0$ ) of Davis '63
  - MT801-803: inferred from  $(n, \alpha \gamma)$  [Nelson99]
- ENDF/B-VII.1 (2005 Dec.): VI.8+Page+Kawano+Young
  - MT=800: 32% reduction  $(n,\alpha_0)$  2.4 $\rightarrow$ 8.9 MeV
    - "assuming Harissopulos05 are definitive"; "Ha05 is 100% correct, BH73 100% wrong norm"
- ENDF/B-VIII.0 (2016 Dec.): VII.1+Hale+Kawano+MWP
  - Re-evaluation of Ha05 by Giorginis et al. (CIELO)
- JENDL-4.0 (2010)
  - ${}^{16}O(n, \alpha_{tot}) < 6.5 \text{ MeV} \sim \text{ENDF/B-VII.0}$





## <sup>17</sup>O Preliminary evaluation Preliminary results

- Configuration: channels, R-matrix parameters
- Observed data in data deck
  - Channels:  $(n,n_0)$ ,  $(n,n_2)$ ,  $(\boldsymbol{\alpha},n_0)$ ,  $(\boldsymbol{\alpha},n_1)$ ,  $(\boldsymbol{\alpha},n)$
  - Types: total, integrated, differential, polarization  $[A_y, P_n]$

| Channel                                                                        | $a_c(\mathrm{fm})$   |               | $\overline{\ell_{\max}}$      |
|--------------------------------------------------------------------------------|----------------------|---------------|-------------------------------|
| $n + {}^{16}O(0^+;gs)$                                                         | 4.40                 |               | 4                             |
| $\alpha + {}^{13}C(\frac{1}{2}; gs)$                                           | 5.40                 |               | 5                             |
| $n_1 + {}^{16}O(0^+; 6.05 \text{ MeV})$                                        | 5.00                 |               | 3                             |
| $n_2 + {}^{16}O(3^-; 6.13 \text{ MeV})$                                        | 5.00                 |               | 2                             |
| Reaction                                                                       | Range $E_n$ ,        | $N_{\rm dat}$ | Observables                   |
|                                                                                | $E_{\alpha} \ (MeV)$ |               |                               |
| $^{16}O(n,n)^{16}O$                                                            | $(0.0,\ 7.0)$        | $2,\!909$     | $\sigma_{ m tot}, \sigma,$    |
|                                                                                |                      |               | $\sigma(\theta), A_y(\theta)$ |
| ${}^{16}\mathrm{O}(n, n_2){}^{16}\mathrm{O}(3^-; 6.13 \text{ MeV})$            | (6.6, 8.8)           | 45            | $\sigma(	heta)$               |
| $^{13}\mathrm{C}(\alpha,\alpha)^{13}\mathrm{C}$                                | (2.0, 5.7)           | $1,\!397$     | $\sigma(	heta)$               |
| $^{13}C(\alpha, n)^{16}O$                                                      | (.23,  8.0)          | $1,\!054$     | $\sigma_r$                    |
| ${}^{13}C(\alpha, n_0){}^{16}O(0^+; \text{ gs})$                               | (1.0,  6.5)          | $3,\!116$     | $\sigma, \sigma(	heta)$       |
| <sup>13</sup> C( $\alpha$ , $n_1$ ) <sup>16</sup> O(0 <sup>+</sup> ; 6.05 MeV) | (5.1,  5.6)          | 113           | $\sigma, \sigma(	heta)$       |
| Total                                                                          |                      | $8,\!634$     | 5 types                       |

#### • New data

- Ciani *et al.* (2021) (*α*,*n*<sub>0</sub>)
- Brandenburg & Meisel (2021) ( $\alpha$ ,n)
- Ebbraro, DeBoer *et al.* (2020) ( $\boldsymbol{\alpha}$ , $n_0$ ), ( $\boldsymbol{\alpha}$ , $n_1$ )

#### 170 system channel/pars

- # channels: 45
  - $J^{\pi}=1/2^{\pm}, ..., 11/2^{\pm}$
- # parameters
  - $E_{\lambda}$ : 81 level energies
  - $\gamma_{\lambda,c}$ : 322 reduced widths
- # Normalizations
  - $n_M$ : 95 norm scales
  - $\Delta E_M$ : 4 shift factors

## <sup>17</sup>O Preliminary evaluation Preliminary results: (α,n<sub>0</sub>)



13c + 4he reaction

400 \*10<sup>-3</sup>





Measurements of  $\sigma_{(\alpha,n)}(E_{\alpha} = 1.0 \text{ MeV})$  for laboratory incident energies given in the first column, the value quoted in the second column, and the values linearly interpolated from the tabular data in the experiment's publication in the right-most column. No re-normalization factors have been applied to these values. In particular, the ORNL value of Bair & Haas[37]is quoted as originally presented without the 0.8 factor mentioned in their *Note added in proof.* 



#### **Comparison LENZ(2017) data vs. ENDF/B-VIII.0** <sup>16</sup>O(n,α<sub>0</sub>)<sup>13</sup>C excitation functions *S. Kuvin & H.Y. Lee (LANL)*



## <sup>17</sup>O Preliminary evaluation scope Preliminary results





### ENDF/B-VIII.0 <sup>16</sup>O(n, $\alpha_0$ )<sup>13</sup>C [MT=800] Comparison with New Evaluation "8.1"





ENDF/B-VIII.0 <sup>16</sup>O(n, $\alpha_0$ )<sup>13</sup>C [MT=800] Ratio of New Evaluation to ENDF/B-VIII.0





# Preliminary new evaluation vs. OU(2021) & Bair & Haas(1973)



 $^{13}C(lpha,n_{tot})^{16}O$ 



# Outlook

• n+9Be

- the added inelastic data is well represented why isn't it performing better?
  - Formatting?  $EDA_{f90} \rightarrow ENDF-6$  correct?;  $ENDF-6 \rightarrow ACE$  correct?
  - Is (n,2n) properly represented?
    - $-{}^{9}\text{Be}(n,2n){}^{8}\text{Be}*$  vs.  ${}^{9}\text{Be}(n,2n)\alpha\alpha$
- ENDF/B-VIII.1 release push to Feb. 2024
  - re-assess available data
  - push to higher energies
  - update the evaluation & covariances
- n+16O
  - Complete the evaluation to  $E_n \sim 9$  MeV (maybe 10 MeV)
    - add missing data
    - Investigate normalization of the (n,n<sub>tot</sub>) Cierjacks' '68 & '83 datasets
  - ${}^{13}C(\alpha,n_0){}^{16}O$  is currently too high everywhere
    - Note that  $(n,n_{tot})$  and  $(n,\alpha_x)$  are tightly correlated by unitarity
  - Perform a complete normalization/covariance study

