

Study of ⁵⁹Ni(n,p)⁵⁹Co and ⁵⁹Ni(n, α)⁵⁶Fe

Sean A. Kuvin, H. Y. Lee, B. DiGiovine, C. Eiroa- Lledo, A. Georgiadou, M. Herman, T. Kawano, H. I. Kim (KAERI), S. Kozimor, V. Mocko, S. Mosby, E. M. O' Brien, C. E. Vermeulen, D. Votaw, L. Zavorka (ORNL)

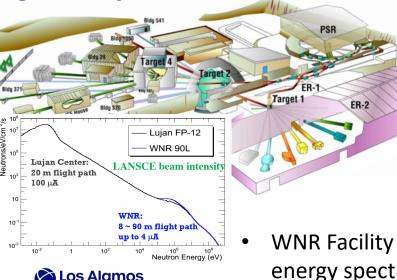
Los Alamos National Laboratory

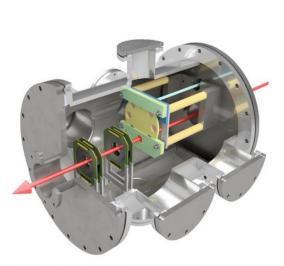
G. Perdikakis, P. Tsintari

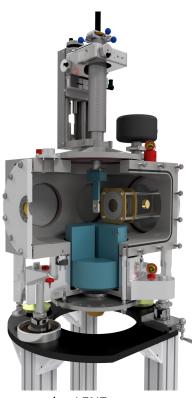
Central Michigan University

11/18/2021

LA-UR-21-32061

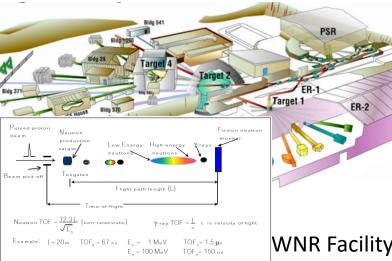

Outline

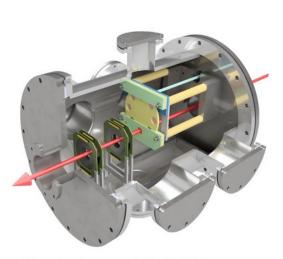

- Neutron induced charged particle measurements with LENZ at LANSCE
- Efforts to include improved outgoing charged particle spectra to ENDF/B-VIII.0 for our simulations of the LENZ experimental setup.
- Study of ⁵⁹Ni(n,p)⁵⁹Co and ⁵⁹Ni(n, α)⁵⁶Fe with a ⁵⁹Ni target
 - Comparison to a surrogate ratio measurement
 - 59Ni is a significant background component to our measurement of ⁵⁶Ni(n,p)
- Summary/outlook


LENZ: The Low Energy (n,z) experimental station

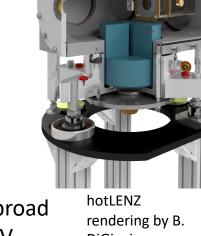
• Detect outgoing charged particles using double-sided silicon strip detectors in a compact setup close to the target sample.

Schematic diagram of the LENZ instrument, composed of two sets of dE DSSD detector telescopes at forward angles, and a target wheel in the middle of the instrument. Red arrow shows the neutron beam direction.




WNR Facility at LANSCE: fast neutrons with a broad energy spectrum ~100s of keV to ~100s of MeV

hotLENZ rendering by B. DiGiovine 10/12/22

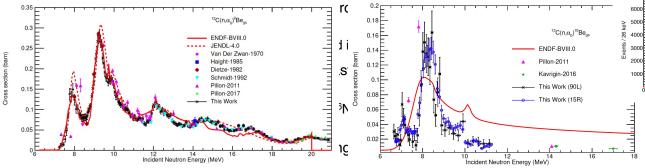

LENZ: The Low Energy (n,z) experimental station

Detect outgoing charged particles using double-sided silicon strip detectors in a compact setup close to the target sample.

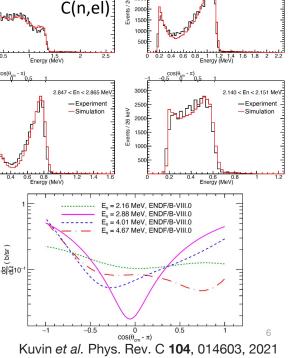
Schematic diagram of the LENZ instrument, composed of two sets of dE DSSD detector telescopes at forward angles, and a target wheel in the middle of the instrument. Red arrow shows the neutron beam direction.

WNR Facility at LANSCE: fast neutrons with a broad energy spectrum ~100s of keV to ~100s of MeV

DiGiovine 10/12/22


- Damage due to hydrogen and helium production in structural materials like Fe, Cr, Ni, etc.
 - Manuscript on 54 Fe(n,z)/ 56 Fe(n,z) to be submitted for publication.
 - Measurements of ${}^{58}Ni(n,z)/{}^{60}Ni(n,z)$ with LENZ are under analysis (D. Votaw)
- Precision measurements of key reactions like ⁶Li(n,t)⁴He, ¹⁰B(n,a)⁷Li, ¹²C(n,a)⁹Be, ¹⁶O(n,a)¹³C, etc.
 - Reactions on carbon studied using a diamond detector as an active carbon target, published in PRC.
 - Differential cross section measurements on ${}^{16}O(n,a){}^{13}C$ to be submitted for publication.
- Informing the design of next-gen reactions (e.g. fast spectrum molten salt reactors) where reactions like ³⁵Cl(n,p)³⁵S can play a significant role as a neutron poison and produces ³⁵S(T_{1/2} ~ 75 days) that can complicate the path to certification for designs that incorporate chloride salts.
 - Study of ³⁵Cl(n,p)³⁵S with LENZ published in PRC. Results presented at previous meetings
- Constraining the vp-process for nuclear astrophysics by studying (n,p) reactions on proton-rich unstable nuclei (radioactive targets).
 e.g. ⁵⁶Ni(n,p)⁵⁶Co (⁵⁶Ni T_{1/2} ~ 6 days)
 - Data analysis underway for the study of ⁵⁶Ni(n,p) with hotLENZ.
- Radiochemistry diagnostics for quantifying performance of nuclear fuel burning.

LENZ: Low Energy (n,z) collaboration/experimental setup developed to pin down these types of reactions that are ubiquitous in nature. Measure double differential cross sections with respect to energy and angle with an emphasis on incident neutron energies between 100 keV and 20 MeV.


Damage due to hydrogen and helium production in structural materials like Fe, Cr, Ni etc.

- Manuscript on ⁵⁴Fe(n,z)/⁵⁶Fe(n,z) to be submitted for publication.
- Measurements of ⁵⁸Ni(n,z)/⁶⁰Ni(n,z) with LENZ are under analysis (D. Votaw)
- Precision measurements of key reactions like ⁶Li(n,t)⁴He, ¹⁰B(n,a)⁷Li, ¹²C(n,a)⁹Be, ¹⁶
 - Reactions on carbon studied using a diamond detector as an active carbon target, publis
 - Differential cross section measurements on ${}^{16}O(n,a){}^{13}C$ to be submitted for publication.
- Informing the design of next-gen reactions (e.g. fast spectrum molten salt reactors)

LENZ: Low Energy (n,z) collaboration/experimental setup developed to pin down these types of re Setup Measure double differential cross sections with respect to energy and angle with an emphasis on keV and 20 MeV.

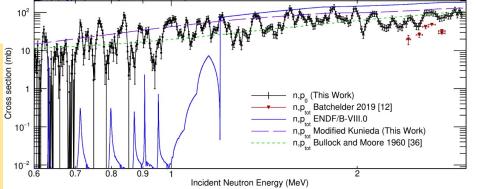
LOS Alamos

3.974 < En < 4.003 MeV

Experiment

-Simulation

4.621 < En < 4.657 MeV

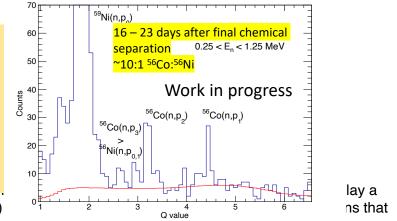

1500

1000

Experiment

-Simulation

- Overall trend of the energy averaged cross section fairly well reproduced by statistical calculations aside from the fluctuations.
- ENDF/B-VIII.0 slightly overestimates the cross section above 1.25 MeV and significantly underestimates it below 1.25 MeV

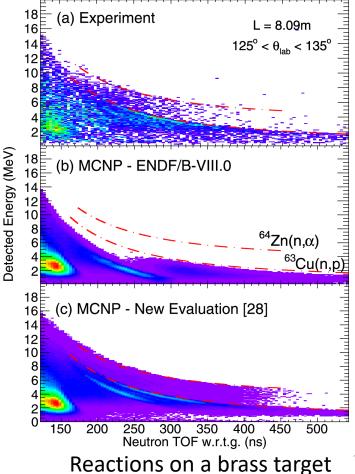

- Informing the design of next-gen reactions (e.g. fast spectrum molten salt reactors) where reactions like ³⁵Cl(n,p)³⁵S can play a significant role as a neutron poison and produces ³⁵S(T_{1/2} ~ 75 days) that can complicate the path to certification for designs that incorporate chloride salts.
 - Study of ³⁵Cl(n,p)³⁵S with LENZ published in PRC. Results presented at previous meetings. Kuvin et al. Phys. Rev. C, 102, 024623 (2020)
- Constraining the vp-process for nuclear astrophysics by studying (n,p) reactions on proton-rich unstable nuclei (radioactive targets).
 e.g. ⁵⁶Ni(n,p)⁵⁶Co (⁵⁶Ni T_{1/2} ~ 6 days)
 - Data analysis underway for the study of ⁵⁶Ni(n,p) with hotLENZ.
- Radiochemistry diagnostics for quantifying performance of nuclear fuel burning.

LENZ: Low Energy (n,z) collaboration/experimental setup developed to pin down these types of reactions that are ubiquitous in nature. Measure double differential cross sections with respect to energy and angle with an emphasis on incident neutron energies between 100 keV and 20 MeV.

- Measurement of ⁵⁶Co(n,p)⁵⁶Fe in the latter days of the experiment provides clean signature of the ⁵⁶Ni content at the beginning of the experiment and background characterization.
- ⁵⁹Ni(n,p) peak provides evidence of IPF produced nickel.

significant role as a neutron poison and produces ${}^{35}S(T_{1/2} \sim 75 \text{ days})$ incorporate chloride salts.

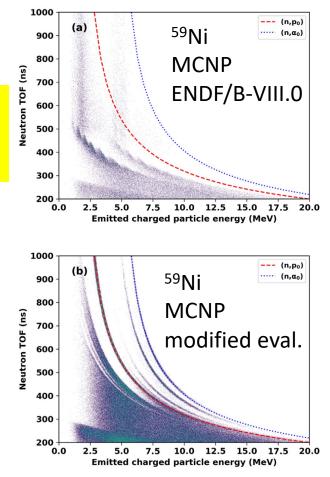
- Study of ³⁵Cl(n,p)³⁵S with LENZ published in PRC. Results presented at previous meetings. Kuvin et al. Phys. Rev. C, 102, 024623 (2020)
- Constraining the vp-process for nuclear astrophysics by studying (n,p) reactions on proton-rich unstable nuclei (radioactive targets).
 e.g. ⁵⁶Ni(n,p)⁵⁶Co (⁵⁶Ni T_{1/2} ~ 6 days)
 - Data analysis underway for the study of ⁵⁶Ni(n,p) with hotLENZ. Measurements on stable ⁵⁸Ni, ⁶⁰Ni, long-lived radioactive ⁵⁹Ni, and short lived ⁵⁶Ni will help to provide a more complete evaluation of the nickel isotopes.
- Radiochemistry diagnostics for quantifying performance of nuclear fuel burning.


LENZ: Low Energy (n,z) collaboration/experimental setup developed to pin down these types of reactions that are ubiquitous in nature. Measure double differential cross sections with respect to energy and angle with an emphasis on incident neutron energies between 100 keV and 20 MeV.

Improved evaluations of (n,p) and (n,a)

- Include missing particle production spectrum, discrete states, angular information. ENDF/B-VIII.0 total cross-sections unmodified (and partial cross-sections when available)
- Modified evaluations for (n,p) and (n,a) were performed for 62 different isotopes by Hyeong-il Kim of KAERI and incorporated into the MCNP simulation. En8lz1 : lz version 1, built on ENDF/B-VIII.0

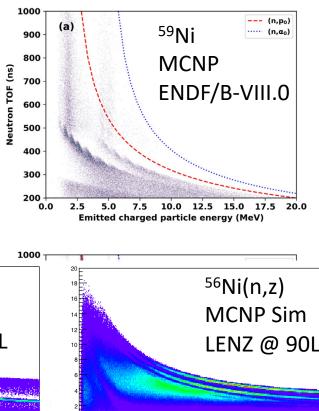
H. I. Kim et al., Nucl. Instrum. Methods Phys. Res. A 964,163699 (2020). https://doi.org/10.1016/j.nima.2020.163699



10/12/22

Improved evaluations of (n,p) and (n,a)

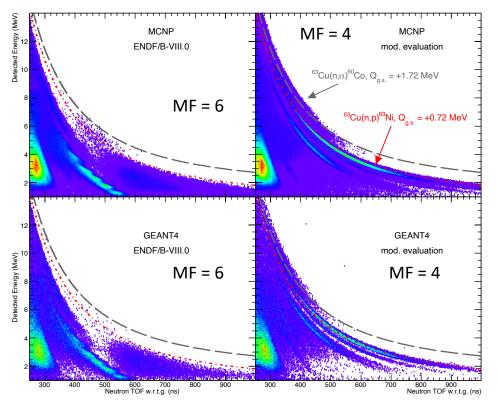
- Include missing particle production spectrum, discrete states, angular information _ENDE/B-VIII 0 total
 Data libraries also generated for reactions on ⁵⁶Ni, ⁵⁷Ni, ⁵⁶Co, ⁵⁷Co, etc for which no previous ENDF/B-VIII.0 evaluation existed
 - Modified evaluations for (n,p) and (n,a) were performed for 62 different isotopes by Hyeong-il Kim of KAERI and incorporated into the MCNP simulation. En8lz1 : lz version 1, built on ENDF/B-VIII.0


H. I. Kim et al., Nucl. Instrum. Methods Phys. Res. A 964,163699 (2020). https://doi.org/10.1016/j.nima.2020.163699

Improved evaluations of (n,p) and (n,a)

- Include missing particle production spectrum, discrete states, angular information _ENDE/B-VIII 0 total
 Data libraries also generated for reactions on ⁵⁶Ni, ⁵⁷Ni, ⁵⁶Co, ⁵⁷Co, etc for which no previous ENDF/B-VIII.0 evaluation existed
 - Modified evaluations for (n,p) and (n,a) were performed for 62 different isotopes by Hyeong-il Kim of KAERI

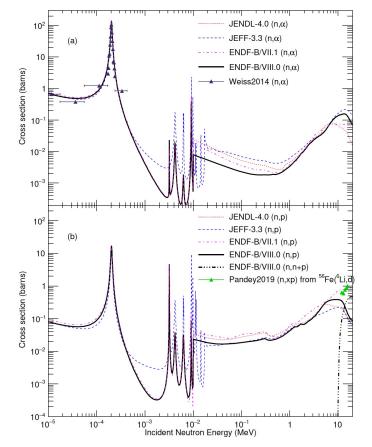
⁵⁸Ni(n,z)

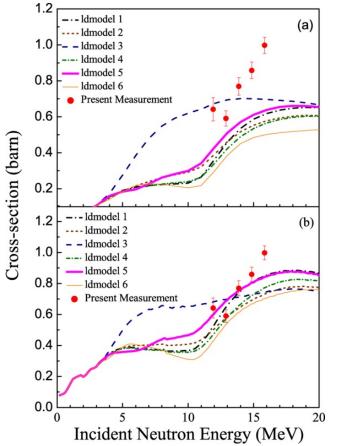


 $\begin{array}{c} \mathsf{MCNP} \mathsf{Sim}\\ \mathsf{LENZ} @ 90\mathsf{L}\\ \mathsf{is} & \mathsf{so} & \mathsf{so}$

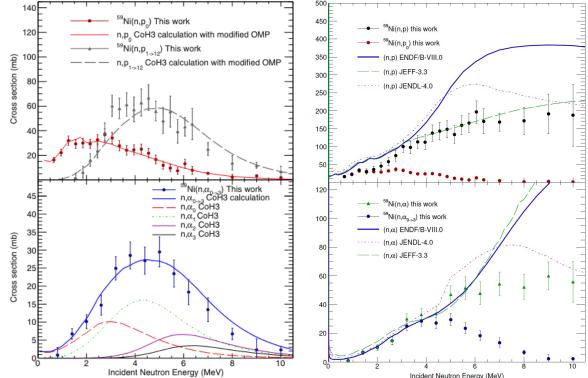
⁵⁹Ni(n,z)

Benchmarking (n,z) reactions between GEANT4 and MCNP


- Simulation of ⁶³Cu(n,z) shows good agreement between MCNP and GEANT4 when ENDF/B-VIII.0 is used. However, the spectra is not realistic and does not reproduce the expected outgoing charged particle energies from experiment. This library includes total cross sections and DDX information (MF=6)
- However, when using the modified data library as an input, which includes partial cross sections to discrete states and angular distributions (MF=4), GEANT4 and MCNP are only in agreement after making modifications to the GEANT4 source code.
- GEANT4 simulation was developed in collaboration with CMU and recent development has been led by P. Tsintari. A manuscript is expected to be submitted soon.


$^{59}Ni(n,p)^{59}Co$ and $^{59}Ni(n,\,\alpha)^{56}Fe$

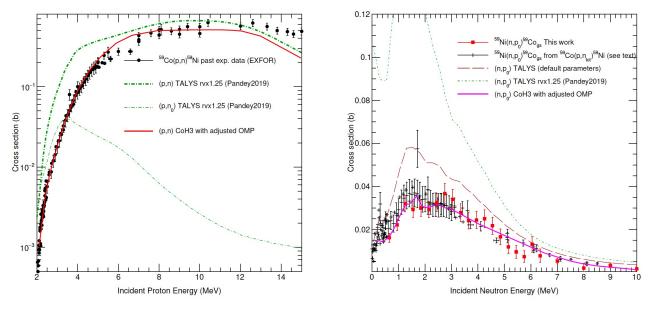
- ⁵⁹Ni is a long-lived (T_{1/2} ~ 100,000 years) unstable isotope of nickel that is bookended between the stable A=58 and A=60 isotopes.
- Can build up to a non-negligible portion of the total nickel content in reactors from neutron capture on ⁵⁸Ni at thermal energies and from ⁶⁰Ni(n,2n) at fast neutron energies in fusion reactors.
- No prior experimental data on ⁵⁹Ni(n,p) or ⁵⁹Ni(n,a) at fast neutron energies above 20 keV, except for (n,xp) cross sections derived through a surrogate ratio method (SRM) above 10 MeV.
- Measured with LENZ during the 2019 (~1 ug of ⁵⁹Ni) and 2020 (~100 ug ⁵⁹Ni) run-cycles.
- JEFF-3.3 includes the most recent evaluation of ⁵⁹Ni from thermal to fast neutron energies.
- New data allows for a sensitive test of calculations that use global input parameters and/or to benchmark indirect methods like SRM.


Surrogate ratio measurement of ⁵⁹Ni(n,xp)

- Prior to this work, the only available
 ⁵⁹Ni(n,xp) cross section information at fast neutron energies was derived from a surrogate ratio method.
- The scale and trend of their data was inconsistent with statistical calculations using default parameters and with ENDF, JEFF, and JENDL for which they conclude that new evaluations are necessary.
- Modifications to the optical potentials used in the statistical calculations are proposed to reproduce the scale of their experimental data.

New data on 59Ni(n,p) and 59Ni(n,a) at fast neutron energies

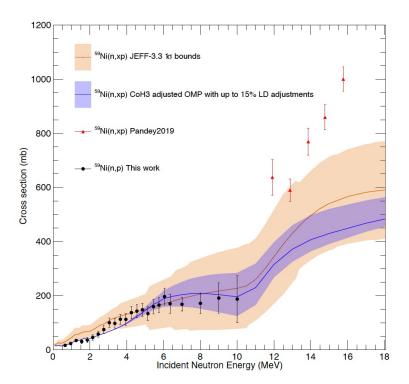
- Statistical Hauser-Feschbach calculations performed using the code CoH3 and with TALYS.
- For (n,p) below 3 MeV, the experimental cross section is approximately 30% lower than the available evaluations and from the calculations using default parameters. In contrast to the adjustment of r_v by 1.25 by Pandey, we obtain better agreement with our data by more modest scaling adjustments of 0.9, 0.95 and 0.95 for the a_w , r_w , r_v proton OMP.



Comparison between ⁵⁹Ni(n,p)⁵⁹Co and ⁵⁹Co(p,n)⁵⁹Ni

The prescribed adjustment (scaling the volume radius term by 1.25) to the default optical model parameters in TALYS by Pandey *et al.* also performs worse compared to the default parameters when reproducing the ⁵⁹Co(p,n) data. It results in a factor 4-5 difference between our direct measurement data and the calculation for ⁵⁹Ni(n,p₀) at ~2 MeV.

In contrast, we obtain better agreement better agreement between the (p,n) data and our experimental (n,p) data with the more modest adjustments to the proton OMP.



For (n,p_0) (right), the magenta curve is from the CoH calculation using the same optical model parameters as the red curve for ⁵⁹Co(p,n) case (left). The black data points (right) are derived from the ⁵⁹Co(p,n) data from exfor by using the statistical model calculation to get the expected ratio of (p,n_0) to (p,n) and then using detailed balance theorem to go from (p,n_0) to (n,p_0)

Study of ⁵⁹Ni(n,p)

- Going from the upper to lower bounds of the 1σ band from JEFF-3.3 represents a range of nearly a factor of 5 and is inconsistent with the cross sections derived from the surrogate work.
- Our direct measurement is in fairly good agreement with the central value of JEFF-3.3 above E_n = 3 MeV but requires a slight adjustment below 3 MeV.
- Raises questions about the reliability of that particular application of the SRM.
- Direct measurements on radioactive isotopes should be made, when feasible.

Summary/Outlook

- Study of ⁵⁹Ni(n,p) via a direct measurement with a radioactive nickel target demonstrated the importance of making direct measurements, when feasible (manuscript written, to be submitted to PRC).
- Analysis of ⁵⁶Ni(n,p) data is in progress.
- In addition, recent measurements on ⁵⁸Ni and ⁶⁰Ni (analysis led by D. Votaw) with LENZ will help provide a more complete evaluation of the nickel isotopes when combined with the radioisotope data.
- In anticipation of some of the nuclear data needs for (n,z) reactions on unstable nuclei, we have begun planning the development of a solenoidal spectrometer for (n,z) studies at LANSCE that will have significantly improved sensitivity over a more "traditional approach" to charged particle detection.

