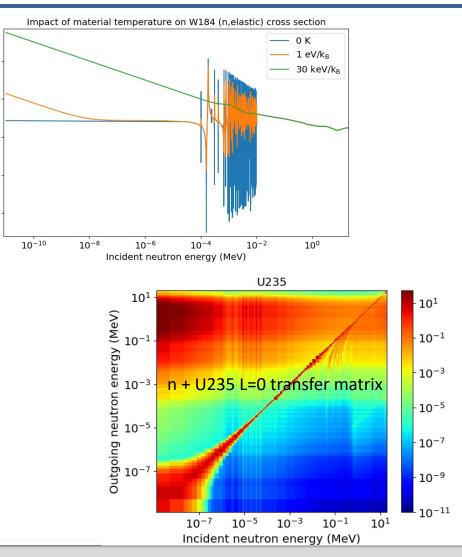
TNSL improvements in FUDGE CSEWG

C. M. Mattoon

October 19, 2021

LLNL infrastructure for managing and processing nuclear data

 10^{4}


100

 10^{-4}

section (b) 102

Cross 10^{-2}

- GNDS: Generalized Nuclear Database Structure
 - New international format for storing evaluated and processed nuclear data
 - Replaces various formats including ENDF-6
- FUDGE: For Updating Data and Generating Evaluations
 - Python based code for modifying, viewing and processing nuclear data
 - Computationally intensive routines written in C and C++
 - FUDGE-5.0 now available at github.com/LLNL/fudge
- GIDI+: General Interaction Data Interface
 - Suite of C++ APIs for accessing GNDS data for use in transport codes
 - Includes API for sampling GNDS data as needed by Monte Carlo codes
 - New release coming soon to github.com/LLNL/gidiplus
- Both codes are open source and used externally

Recent FUDGE development has focused on improving lowenergy neutron capabilities, especially for TNSL and URR.

Thermal Neutron Scattering Law

- TNSL format specification is changing significantly in GNDS-2.0
- FUDGE processing implemented, tested various ways
 - Compare directly (processed cross sections and spectra) and indirectly (broomsticks, k_{eff})
 - Some differences for incoherent inelastic require further exploration
- Now have several methods for getting processed FUDGE results into transport codes
 - GNDS with GIDI+, ACE format, ENDL format with COG library generator or legacy LLNL processing
- Unresolved resonance region
 - FUDGE probability tables (especially for elastic and total) often show narrower cross section range compared to NJOY / FRENDY
 - Working with other code developers to understand that difference

The hierarchy for storing TNSL data was overhauled between GNDS-1.9 and GNDS-2.0

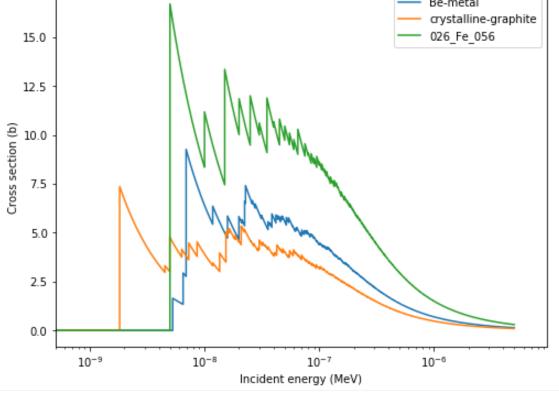
	GNDS-2.0
GNDS-1.9	- <reactionsuite evaluation="ENDF/B-8.0" format="1.10" interaction="TNSL" projectile="n" projectileframe="lab" target="tnsl-Al27"> +<styles></styles> +<documentations></documentations> +<pops format="0.1" name="protare_internal" version="1.0"></pops> -<reactions></reactions></reactionsuite>
GNDS-1.9 - <thermalscattering mat="53" material="13-Al- 27"> +<documentation name="endfDoc"></documentation> <utoffenergy unit="eV" value="5.0"></utoffenergy> <mass unit="amu" value="26.74975"></mass> -<coherentelastic> -<s_table> +<gridded2d label="eval"></gridded2d> </s_table> </coherentelastic> -<incoherentinelastic calculatedatthermal="true"> +<scatteringatoms></scatteringatoms> -<s_alpha_beta> +<gridded3d label="eval"></gridded3d> </s_alpha_beta> +<gridded3d label="eval"></gridded3d> </incoherentinelastic></thermalscattering>	- <reations> -<reations> -<reation endf_mt="2" label="n [thermalNeutronScatteringLaw coherent-elastic]"> -<doubledifferentialcrosssection> -<thermalneutronscatteringlaw_coherentelastic label="eval" pid="n" productframe="lab"> -<s_table> +<gridded2d></gridded2d> </s_table> </thermalneutronscatteringlaw_coherentelastic></doubledifferentialcrosssection> +<coresssection> +<coresssection> +<coresssection> +<crosssection> +<coresssection> +<crosssection> +<coresssection> -<reaction endf_mt="4" label="n [thermalNeutronScatteringLaw incoherent-inelastic]"> -<reaction endf_mt="4" label="n [thermalNeutronScatteringLaw incoherent-inelastic]"> -<doubledifferentialcrosssection> +<coresssection> -<reaction endf_mt="4" label="n [thermalNeutronScatteringLaw incoherent-inelastic]"> -<doubledifferentialcrosssection> +<coresssection> -<stable> -<doubledifferentialcrosssection> -<doubledifferentialcrosssection> -<doubledifferentialcrosssection> -<doubledifferentialcrosssection> -<doubledifferentialcrosssection> -<doubledifferentialcrosssection> -<doubledifferentialcrosssection> -<doubledifferentialcrosssection> -<doubledifferentialcrosssection> -<doubledifferentialcrosssection> -<doubledifferentialcrosssection> -<doubledifferentialcrosssection> -<doubledifferentialcrosssection> -<doubledifferentialcrosssection> -<doubledifferentialcrosssection></doubledifferentialcrosssection></doubledifferentialcrosssection></doubledifferentialcrosssection></doubledifferentialcrosssection></doubledifferentialcrosssection></doubledifferentialcrosssection></doubledifferentialcrosssection></doubledifferentialcrosssection></doubledifferentialcrosssection></doubledifferentialcrosssection></doubledifferentialcrosssection></doubledifferentialcrosssection></doubledifferentialcrosssection></doubledifferentialcrosssection></doubledifferentialcrosssection></stable></coresssection></doubledifferentialcrosssection></reaction></coresssection></doubledifferentialcrosssection></reaction></reaction></coresssection></crosssection></coresssection></crosssection></coresssection></coresssection></coresssection></reation></reations></reations>
	+ <outputchannel genre="twoBody" process="thermalNeutronScatteringLaw incoherent-inelastic"></outputchannel> + <applicationdata></applicationdata>

The hierarchy for storing TNSL data was overhauled between GNDS-1.9 and GNDS-2.0

	GNDS-2.0
GNDS-1.9 - <thermalscattering mat="53" material="13-AI- 27"> +<documentation name="endfDoc"></documentation> <cutoffenergy unit="eV" value="5.0"></cutoffenergy> <mass unit="amu" value="26.74975"></mass> -<coherentelastic> -<s_table> +<gridded2d label="eval"></gridded2d> </s_table> </coherentelastic> -<incoherentelastic> -<incoherentinelastic calculatedatthermal="true"> +<scatteringatoms></scatteringatoms></incoherentinelastic></incoherentelastic></thermalscattering>	GNDS-2.0 - <reactionsuite evaluation="ENDF/B-8.0" format="1.10" interaction="TNSL" projectile="n" projectileframe="lab" target="tnsl-Al27"> +<styles></styles> +<documentations></documentations> +<pops format="0.1" name="protare_internal" version="1.0"></pops> -<reactions> -<reactions> -<reaction endf_mt="2" label="n [thermalNeutronScatteringLaw coherent-elastic]"> -<doubledifferentialcrosssection> -<reactions< td=""> <doubledifferentialcrosssection><stable> +<gridded2d></gridded2d> +<gridded2d></gridded2d> +<crosssection> +<crosssection> +<coutputchannel genre="twoBody" process="thermalNeutronScatteringLaw coherent-elastic"></coutputchannel></crosssection></crosssection></stable></doubledifferentialcrosssection></reactions<></doubledifferentialcrosssection></reaction></reactions></reactions></reactionsuite>
- <s_alpha_beta> +<gridded3d label="eval"></gridded3d> </s_alpha_beta> 	<pre>-<reaction endf_mt="4" label="n [thermalNeutronScatteringLaw incoherent-inelastic]"> -<doubledifferentialcrosssection> -<thermalneutronscatteringlaw_incoherentinelastic label="cval" pid="n" productframe="lab"> <options asymmetric="false" calculatedatthermal="true"></options> +<scatteringatoms></scatteringatoms> -<s_alpha_beta> +<gridded3d></gridded3d> </s_alpha_beta> </thermalneutronscatteringlaw_incoherentinelastic></doubledifferentialcrosssection></reaction></pre>

GNDS-2.0 layout integrates TNSL with all other reactions. Integrating and renormalizing TNSL double-differential cross sections produces a standard cross section and outgoing neutron distribution.

</reactionSuite>

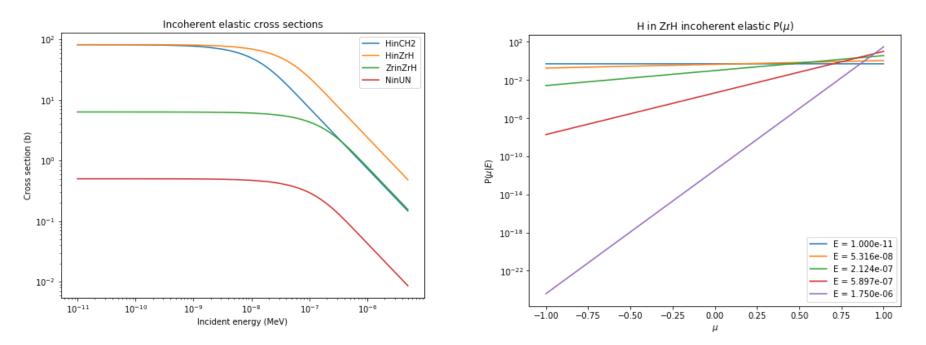


tic"></outputChannel>

Coherent elastic: bulk scattering off crystalline materials

$$\frac{d^{2}\sigma}{dE' \ d\Omega}(E \rightarrow E', \mu, T) = \frac{1}{E} \sum_{i=1}^{E_{i} < E} s_{i}(T) \ \delta(\mu - \mu_{i}) \ \delta(E - E')/2\pi$$
where
$$\mu_{i} = 1 - \frac{2E_{i}}{E}$$
• Outgoing angular distribution consists of

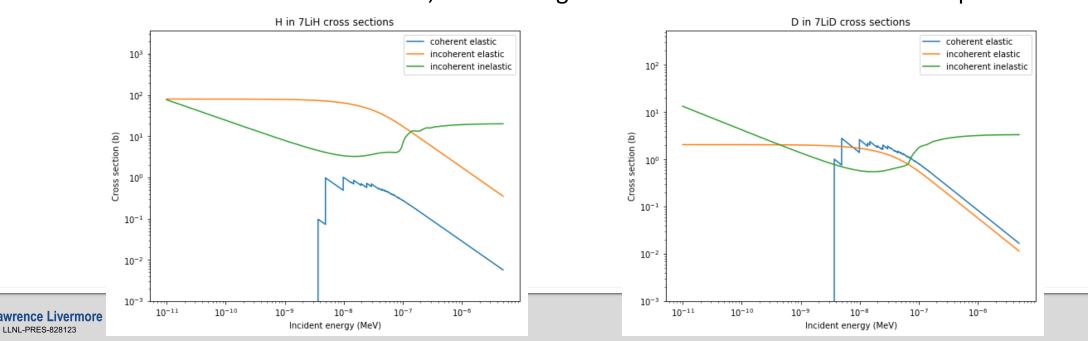
- Outgoing angular distribution consists of delta functions at various μ_i
- TODO: sample angles directly using s_i(T)
 - Requires some work in GIDI+



Incoherent elastic: bulk scattering off partially ordered materials

$$\frac{d^2\sigma}{dE'\,d\Omega}(E\to E',\mu,T) = \frac{\sigma_b}{4\pi}\,e^{-2EW'(T)(1-\mu)}\,\,\delta(E-E')$$

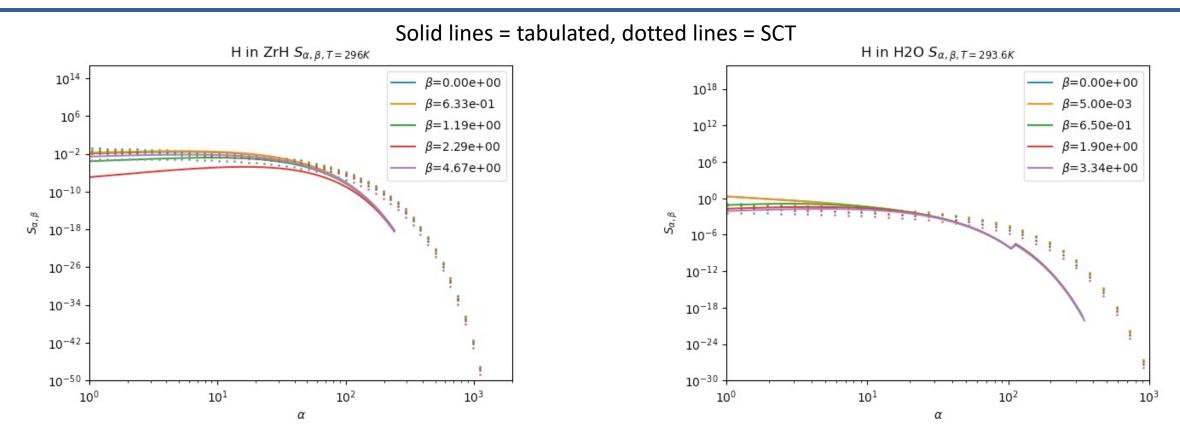
where $\sigma_{\rm b}$ and W'(T) are tabulated


Again, seems more efficient to use W'(T) to sample directly... TBD

GNDS easily handles new LTHR=3 (mixed elastic) format

- Some materials require both coherent elastic and incoherent elastic (plus inelastic) to properly represent thermal scattering region.
- Handled in GNDS simply by adding another *reaction* node for the new elastic term
- Example files for ⁷LiH and ⁷LiD were translated to GNDS and processed with FUDGE

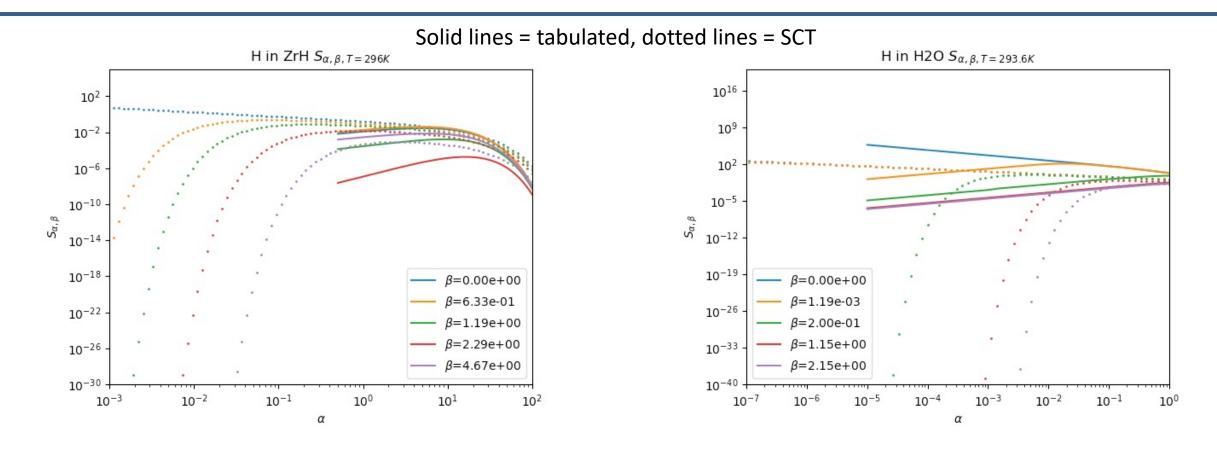
 Results can be translated to ENDL, ACE coming soon once we check latest format update...


Incoherent inelastic is trickier, often requires extrapolation beyond tabulated $S_{\alpha\beta}$ grid especially at forward angles.

$$\frac{d^2\sigma}{d\Omega \, dE'}(E \to E', \mu, T) = \sum_{n=0}^{NS} \frac{M_n \sigma_{bn}}{4\pi kT} \sqrt{\frac{E'}{E}} e^{-\beta/2} S_n(\alpha, \beta, T)$$
$$\alpha = \left[E' + E - 2\mu \sqrt{EE'} \right] /A_0 kT$$
$$\beta = (E' - E)/kT$$

- A₀, M_n, σ_{bn} , S_n(α , β ,T) are tabulated
- α,β grids in many evaluations aren't sufficient for spanning all (E, E', μ) of interest
 - Short collision time (SCT) approximation is appropriate for large α,β but generally not as α approaches 0
 - Extrapolation required for small α , but appears to be handled differently by processing codes
 - Especially relevant for forward scattering where $E^\prime\approx E$

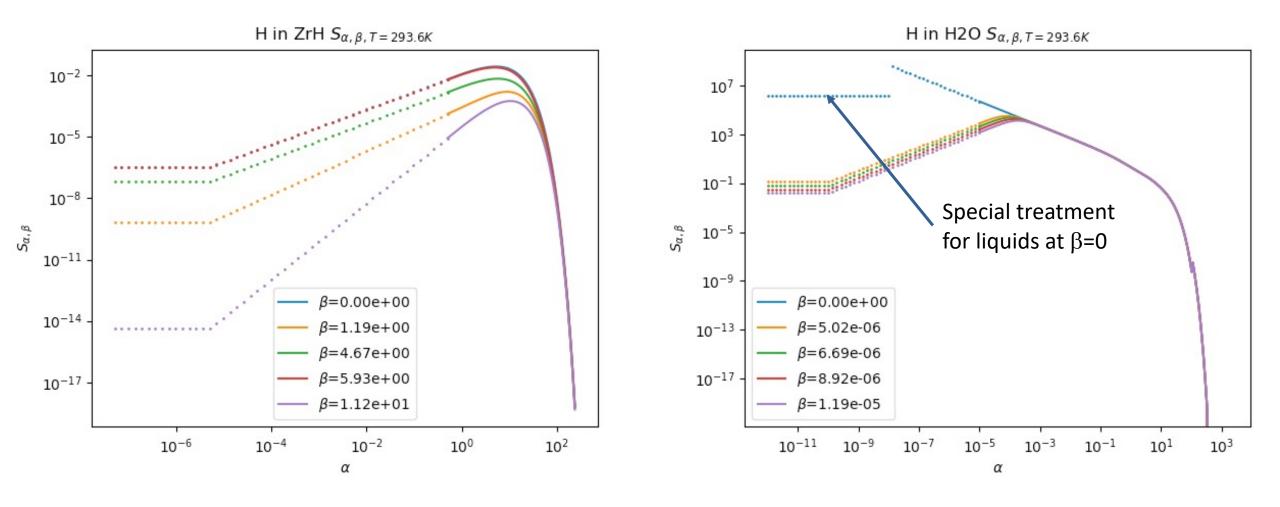
Transition from tabulated S(α,β) to SCT is mostly smooth at the high- α end...



• H in ZrH: S(α , β) tabulated from α = 0.504 up to α = 240

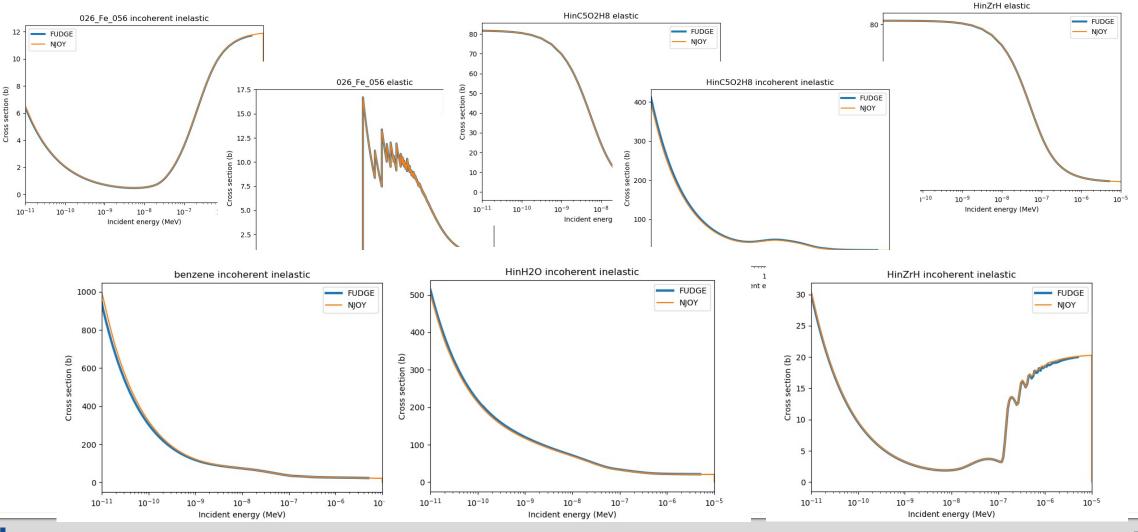
• H in H20: from α = 1.002e-5 up to α = 1581, but switches to SCT earlier for most values of β

... but SCT falls off too fast at the low end.

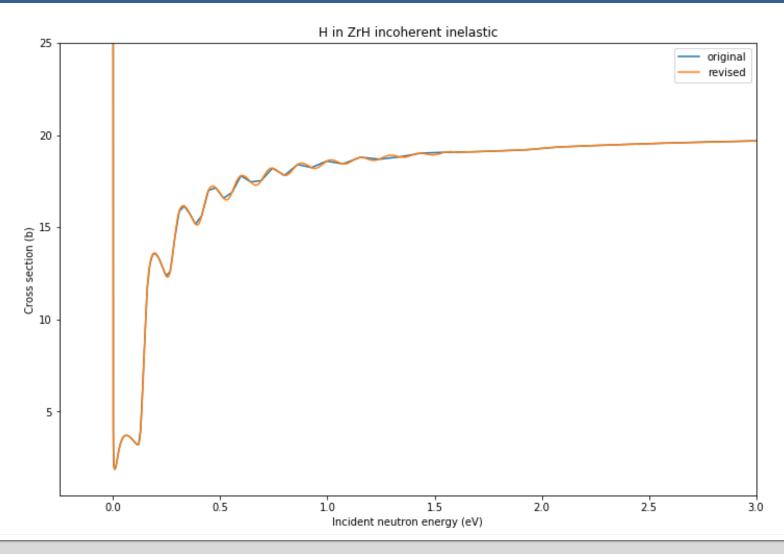


• H in ZrH: S(α , β) tabulated from α = 0.504 up to α = 240

• H in H20: from α = 1.002e-5 up to α = 1581, but switches to SCT earlier for most values of β



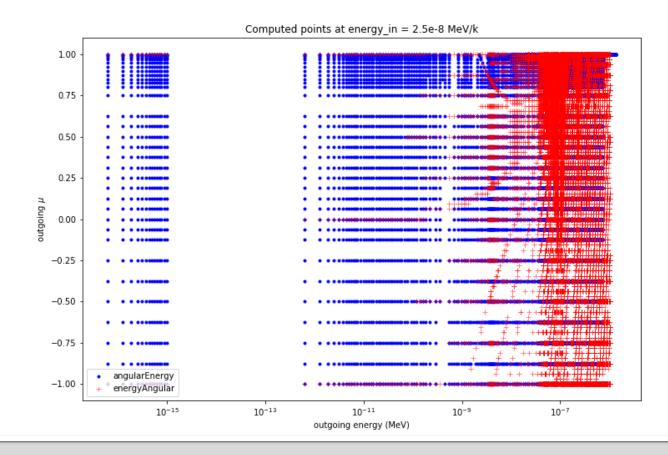
FUDGE uses power-law extrapolation for up to 5 orders of magnitude in α , then switches to S = constant


FUDGE TNSL cross sections compared to NJOY Mostly agree, some differences at low incident energy...

LUNL-PRES-828123

Ational Nuclear Security Administration

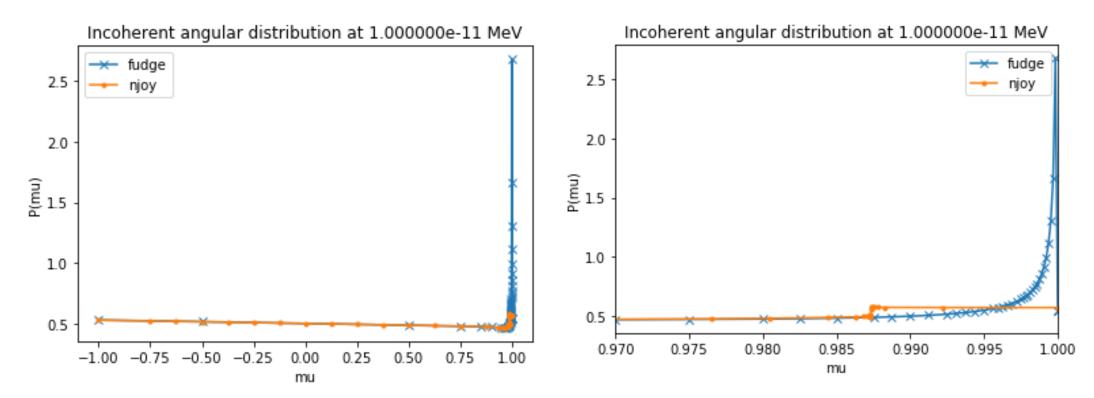
Recent update: iteratively add points to refine cross section



Lawrence Livermore National Laboratory

Recently switched incoherent inelastic distribution storage from P(E'|E, μ) to P(μ |E, E')

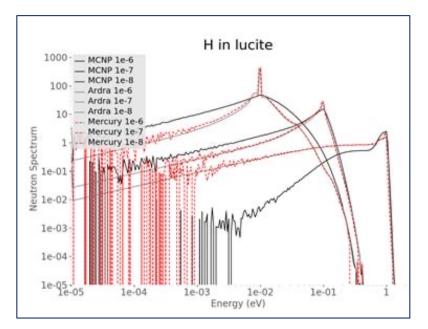
• $P(E'|E,\mu)$ originally used for compatibility with legacy LLNL format ENDL, but storing a μ distribution for each incident / outgoing energy is more efficient



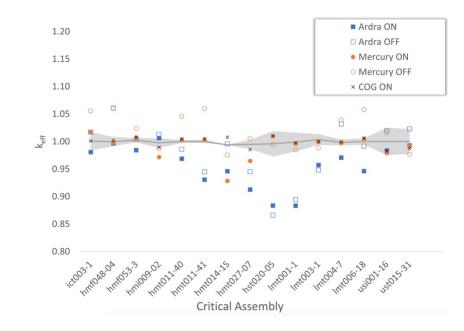
Lawrence Livermore National Laboratory

FUDGE / NJOY differences appear to originate with how each code handles extrapolation to small $\boldsymbol{\alpha}$

- Different approximations for forward scattering in H2O near E = E' = 10⁻¹¹ MeV
 - Note: using THERMR with iform=1 option for easier comparison

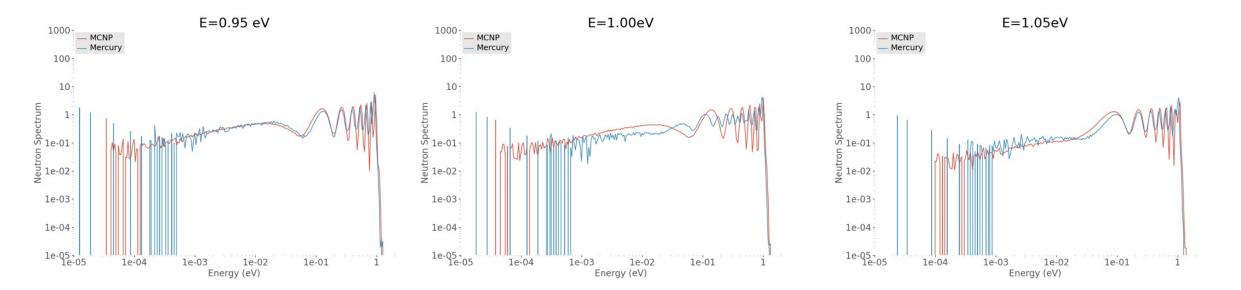


Better would be to improve documentation on how extrapolation should be done



Additional TNSL testing: run broomsticks, critical assemblies and full-scale reactor problems

- Processed GNDS data used with Mercury (MC transport) and Ardra (deterministic)
 - Results compared against MCNP/ENDF80SaB2
 - Modeled critical assemblies, ACRR reactor in several configurations
- Also exported to COG (via legacy ENDL format) for further testing by LLNL Criticality Safety group
 - Minor complication: ENDL requires $P(\mu \mid E) * P(E' \mid E, \mu)$ while ACE requires $P(E', \mu \mid E)$



awrence Livermore National Laboratory

MCNP and MCGIDI (Monte Carlo sampling library in GIDI+) handling interpolation differently

- To understand Mercury/MCNP broomstick differences, FUDGE was modified to process H in ZrH on the same incident energy grid as ENDF80SaB2 ACE files.
- Broomsticks then run with incident energies at grid points (0.95 and 1.05 eV) and at points between... results indicate an interpolation bug in MCGIDI

- FUDGE TNSL processing capabilities are improving
 - New development focuses on reading and writing GNDS, but FUDGE also supports writing to ACE and ENDL
 - Work provides a chance to compare in-depth with other codes
- TNSL processing is mostly complete, but MCGIDI sampling has room for improvement
 - Revisit interpolation + improved strategies for sampling coherent / incoherent elastic

