

Nuclear Graphite TSL Evaluation and Cross Sections

Iyad Al-Qasir

Department of Mechanical & Nuclear Engineering University of Sharjah Sharjah, UAE

Collaborators:

A. Campbell G. Sala K. Ramic' F. Islam A. Qteish B. Marsden **D. Abernathy** Y. Cheng J. Lin M. Stone NSSD NSSD **MSTD** NSSD ESS NSSD YU UM NSSD NSSD

Nuclear Data Weeks (CSWEG-USNDP-NDAG) November 8-19, 2021 Online

Acknowledgment

HIGH FLUX ISOTOPE REACTOR

SPALLATION NEUTRON SOURCE

The University of Manchester

Nuclear Graphite Manufacturing Process

Graphite Samples

Туре	G347A	PGA
Processing	Isostatic Pressing	Extrusion
Grain Size (mm)	0.05	0.8
Isotropy	Isotropic	Non-isotropic
Density (g/cm ³)	1.85	1.70
Porosity (%)	18	25
Sample mass (g)	0.52	5.0
Source	Tokai Carbon Co. Ltd.	University of Manchester
Polarized Optical Micrographs	<u>100µт</u>	

Scheme of Work

Scattering Function S(Q,E)

6

Measured & Calculated Double Differential Scattering Cross Sections

Cross Sections

Cross Sections

Conclusion

✓ The inelastic neutron scattering technique was successfully used to measure the scattering functions, double differential scattering cross-sections as well as the full phonon density of states of the G347A and PGA nuclear graphite at room temperature.

- Excellent agreement found between the measured scattering functions of nuclear graphite (G347A and PGA) and calculated scattering functions of theoretical graphite
- Excellent agreement between the calculated graphite cross section including the coherent one phonon and the measured data of HOPG and AGOT graphite.
- The high cross section of nuclear graphite cannot be attributed to neutron-phonon interaction, it is due to the small angel neutron scattering.

Thank you