

Evaluation of the Thermal Neutron Scattering Cross Sections of CaH₂

B. K. Laramee, A. I. Hawari

LEIP Laboratories Department of Nuclear Engineering North Carolina State University Raleigh, North Carolina, USA

CSEWG, November 17, 2021 Zoom meeting Raleigh, North Carolina, USA

Introduction

- Metal hydrides have long been considered and used as moderator materials
 - High hydrogen content
 - Good thermal stability
 - Relatively low neutron absorption

- **Kimura & Wada (2016-2019)**
 - CaH₂-moderated microreactor (<10MW)

R. KIMURA and S. WADA, "Temperature Reactivity Control of Calcium Hydride–Moderated Small Reactor Core with Poison Nuclides," *Nuclear Science and Engineering*, **193**, *9*, 1013 (2019).

Existing CaH₂ Data

Very little experimental data overall, including :

- Cross Sections
- Phonon DOS (vDOS)
- Crystal, Material Properties
- **Existing Cross Section Data :**
 - No ENDF Evaluation to date
 JEFF3.1 (O. Serot, 2005) -> JEFF3.3
 Contains significant physical approximations

W. M MUELLER et al., Metal *Hydrides*. New York: Academic Press, Inc. (1968).

Comparison to other common moderators

Material	Slowing-Down Power [cm ⁻¹]	Σ _a [cm ⁻¹ , 2200 m/s]	MR
H ₂ O	1.35	0.0222	60.9
D ₂ O	0.173	3.71e-5	4.68e3
ZrH _{1.94}	1.54	0.0065	51
CaH ₂	0.974	0.0268	36.6

NC STAT

JEFF3.3 Data

Ca in CaH₂ Cross Sections

H in CaH₂ Cross Sections

O.SEROT, "New results on CaH₂ thermal neutron scattering cross sections," *AIP Conference Proceedings*, **769**, 1, 1446 (2005).

Isotope	σ_b^{coh} [b]	σ_b^{inc} [b]	
Ca (natural)	2.78	0.05	Data obtained from the
¹ H	1.7583	80.26	NIST database

Evaluation Process

CaH₂ Crystal Structure

- Orthorhombic (*Pnma*)
- \Box 3 non-equivalent atom sites: Ca, H₁, H₂
- □ VASP DFT Model:
 - GGA-PBE, 675ev PW Cutoff, 9x9x9 Monkhorst-Pack k-point mesh

Lattice Constant	This Work	Experiment	Error (%)
a [Å]	5.92176	5.92852	0.114
b [Å]	3.57607	3.57774	0.0468
c [Å]	6.78272	6.78956	0.1007

H. Wu et al., "Structure and vibrational spectra of calcium hydride and deuteride," *Journal of Alloys and Compounds*, **436**, 1-2, 51(2007)

Phonon DOS

PHONON : 3x3x3 Supercell (324 atoms)

P. MORRIS et al., "Inelastic neutron scattering study of the vibration frequencies of hydrogen in calcium dihydride," *Journal of Alloys and* Compounds, **363**, *1-2*, 88 (2004).

FLASSH: Full Analysis Scattering System Hub

- Motivation provide cross section data to support advanced reactor modeling and criticality safety
 - High Fidelity TSL calculations with modern coding techniques using advanced physics
 - Advanced Physics distinct (1phonon) contributions and noncubic formulations
 - Graphical User Interface makes complex physics accessible to all users

Convenient Output Formatting user output files, ACE files, plotted data, etc.

C:\WINDOWS\system32\cmd.exe	□ × > FLASSH: U_UN - □ ×
///// // ///// ///// /////////////////	ersity Project Create Run Help
sing cubic approximation method for coherent elastic evaluat xecuting coherent elastic calculation. xecuting incoherent inelastic calculation at	Do not distribute without explicit permission from Ayman Hawari (aihawari@ncsu.edu)
emperature = 300.0K Number of Scattering Angles ross Section Calculation: 0%] [50%] 0, β grid scaling Scale with T (Grids are T in Calculation Configuration Phonon Expansion Order 100.0 Summed S(α, β) Sum to the specified phon Apply Scatterer # 1 Integral Type Analytical Temperature Configuration Number of Temperatures	A total of 2 kinds of scatterers are in the ENDF File 7) A total of 2 kinds of scatterers are in the ENDF File 7 TSL library. The number of primary, secondary, etc. scatterers in the ENDF library are 1 , respectively. wass (amu) for each scatterer 9.012182, 3 Free Atom σ_{texth} (b) for each scatterer 6.153875,3,4 Free Atom σ_{texch} (b) for primary scatterer
Temperature-Dependent DOS? No Temperatures: 400 500 600 LEIP LABORATORIES	r Reading Data 6 errors have been found while reading the input file. You can find the error(s) in the following file: C:/Users/Benjamin Laramee/Documents/QT/FLASSH_GUI_PROJECT/Projects/ Be_BeO_no_one_phonon/errorLog.txt
	ОК

Example Error Checks

FLASSH: Full Analysis Scattering System Hub

FLASSH: Full Analysis Scattering System Hub

Making the evaluator's job easier:

- GUI
 - Comprehensive error checking
- Built-in ENDF/B-VIII.0 materials
- Convenient formatting options
 - □ ENDF-6 File 7 (w/ MF=1,MT=451)
 - □ ACE (w/ mixed elastic)
 - NJOY-LEAPR input tape

Plotting

- $\square [\alpha, S(\alpha, \beta)] \text{ for select } \beta$
- $\Box [\beta, S(\alpha, \beta)] \text{ for select } \alpha$
- Cross Sections
 - Temperature comparisons for all data
 - All contributions and total cross section
- FUDGE/GNDS Compatibility
 - C++ GUI & Python

CaH₂ TSLs

Ca in CaH₂ Cross Sections

Ca in CaH₂: Comparison

LETP LABORATORIES

CaH2 TSL for ENDF Consideration

cattering Cross Sections for CaH2." T

- □ The following 3 evaluations have been submitted to the NNDC for co for ENDF/B-VIII.1:
 - **Ca** in CaH_2 (MAT=59) $\square MT = 4 (Coherent)$ \square MT = 2
 - $\blacksquare H_1 \text{ in } CaH_2 \text{ (MAT=8)}$ \square MT = 4 (Incoherent) □ MT = 2

 \blacksquare H₂ in CaH₂ (MAT=9) \square MT = 4 (Incoherent) \square MT = 2

			0 1451
onsideration			9 1451
		HZ_CAHZ LEIP LAB EVAL-FEDZI B.K. Laramee, A.I. Hawari	9 1451
		DIST-	9 1451
	1 00000010 0 001(72) 1	ENDF/B-VIII.0 MATERIAL 9	9 1451
	1.080000+2 9.991673-1 -1	THERMAL NEUTRON SCATTERING DATA	9 1451
	0.000000+0 0.000000+0 0	ENDF-6 FORMAT	9 1451
	1.000000+0 5.000000+0 0		9 1451
	0.000000+0 0.000000+0 0	Temperatures = 296 400 500 600 700 800 1000 1200 K	9 1451
	H1_CaH2 LEIP LAB EVAL-Feb21 B.K. Laran		9 1451
	DIST-	HISTORY	9 1451
	ENDF/B-VIII.0 MATERIAL 8		9 1451
590000+2 3.973374+1 -1	THERMAL NEUTRON SCATTERING DATA	This library was produced by the Low Energy Interactions	9 1451
000000+0 0.000000+0 0	ENDF-6 FORMAT	Physics (LEIP) group at North Carolina State University (USA).	9 1451
000000+0 5.000000+0 0		Fight temperatures are available in this library. The inelastic	9 1451
000000+0 0.000000+0 0	Temperatures = 296 400 500 600 700 800 10	scattering cross section libraries for H2 in CaH2 were	9 1451
CaH2 LEIP LAB EVAL-Aug21 B.K. Lara		developed using ab initio lattice dunamics (ATLD) [1 2] The	9 1451
DIST-	HISTORY	Full Law Analysis Scattering System Hub (FLASSH) was used to	9 1451
-ENDF/B-VIII.0 MATERIAL 59		produce $M = 2$ (incoherent) and $MT = 4$ data [2]. This is a	9 1451
THERMAL NEUTRON SCATTERING	This library was produced by the Low Energy	produce HI = 2 (inconcrent) and HI = 4 data [5]. HIS IS a	9 1451
ENDF-6 FORMAT	Physics (LEIP) group at North Carolina Sta	shower evaluation in the EMDT/D libiary, MAI-5 and ZA-109 are	0 1451
	Fight temperatures are available in this	chosen for h2 in Can2.	9 1451
emperatures = 296 400 500 600 700 800 1	scattering cross section libraries for HI		9 1451
	developed using ab initio lattice dynamics	THEORY	9 1451
STORY	Full Law Analysis Scattering System Hub ()		9 1451
	produce MT = 2 (incoherent) and MT = 4 day	CaH2 has an orthorhombic crystal structure belonging to the	9 1451
is library was produced by the Low Ener	produce HI = 2 (Incoherenc) and HI = 4 da	Pnma Hermann-Mauguin space group, with three nonequivalent atom	9 1451
vsics (LEIP) group at North Carolina St	novel evaluation in the ENDF/B library; He	sites. One nonequivalent site belongs to the metal ion, while	9 1451
ght temperatures are available in this	chosen for HI in CaH2.	the other two both contain hydrogen atoms. As a result, these	9 1451
attering cross section libraries for Ca		hydrogen atoms provide distinct contributions to the overall	9 1451
weloped using ab initio lattice duramic	THEORY	frequency spectrum of the material and thus have different	9 1451
11 Jay Applugic Scottoring System Hub (thermal scattering cross sections. As a result, a unique	9 1451
and have MT = 2 (soboropt) and MT = 4 data	CaH2 has an orthorhombic crystal structure	evaluation has been submitted for each nonequivalent hydrogen	9 1451
oduce HI = 2 (conerent) and HI = 4 data	Pnma Hermann-Mauguin space group, with the	atom in CaH2.	9 1451
aluation in the ENDE/B library; MAI=59 (sites. One nonequivalent site belongs to		9 1451
r ca in Canz.	the other two both contain hydrogen atoms	REFERENCES	9 1451
	hydrogen atoms provide distinct contribut:		9 1451
IEORY	frequency spectrum of the material and the	1. A.I. Hawari, "Modern Techniques in Inelastic Thermal Neutron	9 1451
	thermal scattering cross sections. As a re	Scattering Analysis," Nucl. Data Sheets 118, 172 (2014).	9 1451
H2 has an orthorhombic crystal structur	evaluation has been submitted for each non		9 1451
ma Hermann-Mauguin space group, with th	atom in CaH2.	2. B. K. Laramee, A. I. Hawari, "Evaluation of Thermal Neutron	9 1451
tes. One nonequivalent site belongs to		Scattering Cross Sections for CaH2." Transactions of the	9 1451
e other two both contain hydrogen atoms	REFERENCES	American Nuclear Society, 124, 2021.	9 1451
drogen atoms provide distinct contribut			9 1451
equency spectrum of the material and the	1. A.I. Hawari, "Modern Techniques in Ine	3 Y Zhu A T Hawari "Full Law Analysis Scattering System Hub	9 1451
attering cross sections. An evaluation l	Scattering Analysis," Nucl. Data Sheets	(FLASSH) " PHYSOR 2018: Reactor Physics Paving the Way	9 1451
ch nonequivalent hydrogen atom in CaH2,		Towards More Efficient Sustant Cancun Mayico 2018	9 1451
aluation for the metal ion. The coheren	2. B. K. Laramee, A. I. Hawari, "Evaluation	lowards More Efficient Systems, Cancun, Mexico, 2010.	9 1451
ction is stored on the calcium tape, bu	Scattering Cross Sections for CaH2." T		9 1451
ntributions from all nonequivalent site	American Nuclear Society, 124, 2021.		9 1451
astic cross section of calcium is negli	,,,,	1 101 53 0	9 1451
	3. Y. Zhu, A.T. Hawari, "Full Law Analysis		9 1451
FERENCES	(FLASSH) " PHYSOR 2018. Reactor Diverge	/ 4 151358 0	9 1451
	Towards More Efficient Systems Cancun		AT 0
A.I. Hawari, "Modern Techniques in Ine	Towards Hore Errictent Systems, Cancun,		900
Scattering Analysis," Nucl. Data Sheet		1.090000+2 9.991673-1 2 0 0 0	972
		8.027001+1 0.000000+0 0 0 1 8	972
B. K. Laramee, A. I. Hawari, " Evaluat	1 4	8 2	972
September Cross Sections for Cold II T	7	2.960000+2 1.436452+1 4.000000+2 1.633477+1 5.000000+2 1.857166+1	972

1.090000+2 9.991673-1

0.000000+0 0.000000+0

0

0

9 1451

6 9 1451

Summary

CaH₂ evaluation was performed using the *FLASSH* code

- Evaluated the coherent elastic component of Ca in CaH₂
- Evaluated the cross sections for the nonequivalent H₁ & H₂ atom sites, as opposed to an averaged H
- Accounted for the negative coherent scattering length of H

LEIP LABORATORIES

NC STAT

Thank You!

