

ORNL Neutron Cross Section Measurements of ⁹⁰Zr

K. Guber, J. Brown Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

C. Paradela, S. Kopecky, J. Heyse, and P. Schillebeeckx

Nuclear Physics Unit, EC-JRC Geel, Retieseweg 111, 2440 Geel, Belgium

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Pulse width	: 1 ns
Frequency	: 40–800 Hz
Average current	: 4.7–75 μA
Neutron intensity	:1.6 10 ¹² –2.5 10 ¹³ n/s

CAK RIDGE

- Time-of-flight facility
- Pulsed white neutron source $(10 \text{ meV} < E_n < 20 \text{ MeV})$
- Multi-user facility with 10 flight paths (10–400 m)
- Measurement stations have special equipment to perform the following:
 - Total cross section measurements
 - Partial cross section measurements

Neutron production

- e⁻ accelerated to $E_{e-,max} \approx 140 \text{ MeV}$
- (e⁻, γ) Bremsstrahlung in U-target (rotating & cooled with liquid Hg)
- (γ ,n) , (γ ,f) in U-target
- Low energy neutrons by water moderator in Be-canning
- NCSP-Y12 build a new neutron production target for GELINA

Capture cross section measurements at GELINA

Total energy detection principle

- C₆D₆ liquid scintillators
 - 125°
 - Pulse height weighting technique
 - Weighting function from Monte Carlo simulations
- Flux measurements (IC)
 - ${}^{10}B(n, \alpha)$
 - $^{235}U(n,f)$

CAK RIDGE National Laboratory

$$Y_{exp} = N \sigma_{\phi} \, \frac{C_w - B_w}{C_{\phi} - B_{\phi}}$$

L = 10 m, 30 m, and 60 m

Total cross section/transmission measurements

Detector stations Moderated: L = 30 m, 50 m (100 m, 200 m) Fast: L = 400 m Detector

Low energy : ⁶Li(n,t)α Li-glass High energy : H(n,n)H plastic scintillator

$$T = \frac{C_{in}}{C_{out}} \cong e^{-n\sigma_{tot}}$$

Oak Ridge National Laboratory measurement activities for Zr

- Zr has 5 stable isotopes; at least 4 major isotopes should be measured
- Good high-resolution Oak Ridge National Laboratory (ORNL) total cross section data for separated isotopes are available, even for the longlived radioactive fission product ⁹³Zr; data were retrieved from the Jack Harvey archive of ORELA experiments. Experiments were performed with metallic samples at 80 and 200m FP length.
- Therefore, only neutron capture experiments must be performed using isotopically enriched samples
- Transmission and (n,γ) Experiments with natural samples have been performed at GELINA: list mode data sorted into time-of-flight (TOF) spectra for data reduction
- Natural sample data serve as a good sanity check of the ENDF files for separated isotopes

ORNL measurement activities for Zr

- The combination of the natural sample capture data with the total cross section of the separated isotopes will help to obtain parameters for the strong capture resonances even, without data from enriched samples
- Because travel was cancelled due to COVID-19, a contingency plan was devised with the European Commission (EC) Joint Research Centre (JRC) to perform experiments
- Raw experimental data will be acquired by JRC-Geel and shipped to ORNL, where all data sorting and reduction will be performed on ORNL computers
- A ⁹⁰Zr metallic sample was produced by ORNL's Isotope Science and Engineering Directorate and shipped in September 2020 to JRC-Geel
- Capture and transmission experiments were performed in 2021

Old ORNL ⁹⁰Zr data

Resolved resonances are visible above 1 MeV by a factor of 3 more than previous experiments

CAK RIDGE

Old ORNL ⁹³Zr data

Total cross section of ⁹³ZrO₂ resolved resonances well above 100 keV

ORNL measurement activities for Zr

- Transmission experiments with different Zr samples were performed using the FP4 50 m station
- Experiments used different background filter combinations

ORNL measurement activities for Zr (continued)

Neutron capture at FP14, 60 m

⁹⁰Zr sample

- Metallic samples are the first choice for capture experiments, as they help reduce backgrounds from sample scattered neutrons due to the lack of scattering compound material such as H,O and C
- The sample is not very uniform and is warped, but for capture experiments, this is not a real problem
- Transmission samples should be uniform, but with good ORELA transmission data, this is not an issue
- However, the nonuniform transmission data could be used to test analysis program data correction procedures; the results can be compared to existing ORELA transmission data

Background determination in transmission using black resonance filters

⁹⁰Zr transmission compared to ENDF

⁹⁰Zr transmission compared to ENDF

CAK RIDGE

16

⁹⁰Zr transmission compared to ENDF

Status of NCSP experiments at EC-JRC Geel

	W	Cu	Ca	Ce	V	Zr	La
Sample	Metallic disks 182,183,184,186	Metallic disks 63 and 65	Metallic disks Nat Ca	Metallic disks Nat Ce, Ce-142 oxide	Metallic disks	Nat Zr metallic disks 90,91,92,94Zr	Nat La metallic disks
	2009–2011	2011–2012	2013–2014	2014–2015 2018–2019	2015–2016	2016–2017	2017–2018
Experiments GELINA	60 m, 30 m (n,γ) transmission	60 m (n,γ)	60 m (n,γ) transmission	Nat Ce 60 m (n,γ) Nat Ce transmission, ¹⁴² Ce experiments completed	60 m (n,γ) transmission	Nat Zr 60 m (n,γ) + transmission ⁹⁰ Zr transmission and (n,γ) data in FY2021	60 m (n,γ) transmission
Data sorting	Finished 60 m + transmission	Finished 60 m	Finished 60 m transmission	Finished for thin and thick sample, ¹⁴² Ce data sorting finalized	Finished for thin and thick sample	Finished for thin and thick natural sample, ⁹⁰ Zr transmission	Finalized
Reduced to cross section	X-section, transmission	X-section	X-section transmission 0.6, 1.0, 5 cm samples	2 mm X-section 2 mm transmission 10 mm transmission ¹⁴² Ce data	Thin X-section 0.35 and 2 mm, transmission	⁹⁰ Zr transmission	X-section, transmission
Data testing	Data ready for evaluation	Data ready for evaluation	Data ready for evaluation	Data ready for evaluation	In progress, data ready for evaluation	In progress	Data ready for evaluation
Analysis and evaluation	Finalized and submitted to National Nuclear Data Center	Finalized and submitted to National Nuclear Data Center	Finalized and submitted to National Nuclear Data Center	In progress Final stages	In progress		In progress

National Laboratory

18

People supporting JRC experiments and evaluations

- Peter Schillebeeckx, EC-JRC Geel
- Carlos Paradela, EC-JRC Geel
- Stefan Kopecky, EC-JRC Geel
- Jan Heyse, EC-JRC Geel
- Ruud Wynats, EC-JRC Geel
- Clint Ausmus, Mike Zach, ORNL
- Marco Pigni, ORNL
- Chris Chapman, ORNL
- Jordan McDonnell, ORNL
- Jesse Brown, ORNL

Acknowledgments

This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the US Department of Energy

Additionally, this work was also supported by JRC-Geel and the European Union

