

Spectroscopy of fission products for forensics

NNDC - BNL

Experimental campaign: Background

- The most common way to identify fission products and determine their yield, is to measure the characteristic γ-rays emitted in their decay ("activation technique")
- This technique fully relies on a solid knowledge of nuclear decay data (*i.e.*, γ-ray energy and intensities), as well as fission yields
- Experimental campaign to accurately measure decay data of selected fission products relevant to Nuclear Forensics

Previous Experience with Medical Isotopes

A striking **example** of the sensitivity and the improvements to the decay schemes that can be achieved with modern arrays is given by ⁸⁶Y β^+ -decay

Our study identified 52 new excited levels and over 100 new γ -ray transitions

The **511-keV intensity** (useful for diagnostics purposes) **decreases** by 15%

Lanthanum-140

- along with Ba-140, is a well-known chronometer used to date a nuclear event
- evaluated intensities originate from a single publication from 1991

M. Jandel, P. Bender

Production & Assay

- Radioactive ¹⁴⁰La was produced at the UMass Lowell research reactor via (n,g) on ^{nat}La
- The source was shipped to ANL for assay in **Gammasphere** (~ 3 days)

La-140 Analysis

- Consistent Matrix and Singles intensities - in most cases confirm the ENSDF intensities (1991CH05)
- ~10 proposed new transitions
- γ - γ angular correlation

taken up by 3 SULI interns over the summer/fallJ. OcheltreeN. CabanasN. Joseph

Iodine-130

- "blocked" fragment, highly-sensitive to fuel/n-energy changes
- ENSDF based on a 1973 measurement, with more recent experiments reporting intensities disagreeing by as much as 10%

131Ba 11.50 D a: 100.00%	132Ba >3.0E+21 Y 0.101% 28	133Ba 10.551 Y a: 100.00%	134Ba STABLE 2.417%	135Ba STABLE 6.592%	136Ba STABLE 7.854%	137Ba STABLE 11.232%	138Ba STABLE 71.69895	139Ba 83.06 M β-: 100.00%
130Cs 29.21 M ε: 98.40% β-: 1.60%	131Cs 9.689 D 8: 100.00%	132Cs 6.480 D ε: 98.13% β-: 1.87%	133Cs STABLE 100%	134Cs 2.0652 Υ β-: 100.00% ε: 3.0E-4%	139Cs 2.3E+6 Υ β-: 100.00 b	136Cs 13.04 D β-: 100.00%	137Cs 30.08 Υ β-: 100.00%	138Cs 33.41 M β-: 100.0095
129 %e STABLE 26.4006%	1 30Xe STABLE 4.071095	131Xe STABLE 21.232%	132Xe STABLE 26.9086%	133 Xe 5.2475 D β-: 10.00%	134 Χε >5.8E+22 Υ 10.43579b 2β-	135 Χ- 9.14 H β-: 100.00%	136 Xe >2.4E+21 Υ 8.857395 2β-	137Xe 3.818 M β-: 100.00%
1281 24.99 M β-: 93.1095 δ: 6.90%	1291 1.57Ε+7 γ β-: 100.0 8	1301 12.36 H β-: 100.00%	1311 8.0252 D β-: 100.00%	1321 2.295 H β-: 100.00%	1331 20.83 H β-: 30.00%	134I 52.5 M β-: 100.00%	1351 6.58 H β-: 100.00%	1361 83.4 S β-: 100.00%
127Te 9.35 H β-: 100.00%	128Te 2.41E+24 Y 31.74% 2β-: 100.00%	129Te στ β-: 100.00%	130Te ≥3.0E+24 Y 34.08% 2β-: 100.00%	131Te 25.0 M β-: 100.00%	132Te 3.204 D β-: 100.00%	133Te 12.5 M β-: 100.00%	134Te 41.8 M β-: 100.00%	135Te 19.0 S β-: 100.00%

Energy (keV)	lg (1973Ho25)	lg (1999SaZW)
417.9	34.5(10)	26.5(9)
668.5	97(3)	90(7)
1157.4	11.4(4)	8.2(6)

lodine-130

Production & Assay

- Purchase of enriched ¹³⁰Te and production of the irradiation target (J. Greene, ANL)
- ¹³⁰I was produced at the BNL Tandem Van de Graaff via 7.5 MeV ¹³⁰Te(p,n)
- The source was shipped to ANL for assay in Gammasphere (~ 1 day)

- 2 new levels
- 23 new transitions
- 3 re-placed transitions

- 2 new levels
- 23 new transitions
- 3 re-placed transitions

7.934.5(10)26.5(9)34.5(5)8.597(3)90(7)97.4(14)	ergy (keV)	lg (1973Ho25)	lg (1999SaZW)	Present Work	
8.5 97(3) 90(7) 97.4(14)	.9	34.5(10)	26.5(9)	34.5(5)	
	3.5	97(3)	90(7)	97.4(14)	
57.4 11.4(4) 8.2(6) 11.52(18)	7.4	11.4(4)	8.2(6)	11.52(18)	

- 2 new levels
- 23 new transitions
- 3 re-placed transitions
- $T_{1/2} = 12.36(1)$ hrs

- 2 new levels
- 23 new transitions
- 3 re-placed transitions
- $T_{1/2} = 12.36(1)$ hrs

FY 2022 - planned measurements

I-135/Xe-135

- ¹³⁵Xe has been identified for continuous monitoring for CTBT applications thanks to its low reactivity
- ¹³⁵I yield remains nearly constant for all fission targets / energies (reference for other lodine isotopes)
- ¹³⁵Xe decay is based on one hand-written private communication from 1974

	° Xe						1974MEZV			
	Et GEN			Iz (arg)			Inor ang		lg	
_	158.	Z 97	(9)	3.	21(5)) 4.17	.377	467	294	
_	200.	194	(95)	0	13(5)	.012	608	40-	
	249.	794	(1)	= /000	,	1070	962	249	p	
	35A.	391	(30)	2	45(5)	2,51	.227	608	2.9	

FY 2022 - planned measurements

Cerium-143

- particulate fission product monitored as part of CTBT, and - along with other A=143 isotopes, important for predictions of inventory in used fuel assemblies
- evaluated data originate from a single experiment performed in 1989

production through neutron irradiation of a sample of ^{nat}Ce at the **UMass Lowell** research **reactor**

αβγ decay station being commissioned at NNDC - BNL

Spectroscopy of fission products for Forensics

