¹³C(α,n)¹⁶O studies at the University of Notre Dame

James deBoer

University of Notre Dame and The Joint Institute for Nuclear Astrophysics CSEWG, 11-16 November 2021

JINA-CEE

Motivations

- Large mass detectors for neutrino and dark matter detection (e.g. CDMS, DUNE, KamLAND)
 - Actinides and light elements (carbon, oxygen, etc.) are hard to completely remove from setups
 - Actinide decays \rightarrow up to 9 MeV α -particles \rightarrow (α ,n) on light nuclei in the environment
- Neutron applications
 - Sources4c modernization
 - ▶ ¹⁹F, ¹⁸O, ¹⁷O, ¹³C(α ,n) reactions
 - For example, data evaluation of the ¹⁷O system, ¹⁶O(n, α_0)¹³C (See Mark Paris' talk on Wednesday at 15:20 and Thursday at 13:55 EST.)
- Nuclear Astrophysics
 - (main) *s*-process neutron source: ${}^{13}C(\alpha,n){}^{16}O, {}^{22}Ne(\alpha,n){}^{25}Mg, {}^{17}O(\alpha,n){}^{20}Ne, {}^{18}O(\alpha,n){}^{21}Ne, {}^{25}Mg(\alpha,n){}^{28}Si, {}^{26}Mg(\alpha,n){}^{29}Si$
 - First stars: ${}^{10,11}B(\alpha,n){}^{13,14}N$
 - 100 keV to a few MeV
- See (Paraskevi) Vivian Dimitriou's talk on Wednesday at 15:40 EST

One way we can improve (α,n) type reactions

Level diagram of ¹⁷O system

- Lots of levels!
- ► First excited state is 0⁺
 - De-excites via pair production
- 2nd, 3rd, and 4th excited states decay through γ-ray emission with nearly 100% probability to the ground state

Febbraro et al. (2020)

FIG. 1. Level schematic of ¹⁷O depicting the pertinent details of the ¹³C(α , n)¹⁶O reaction.

Nuclear Science Laboratory (NSL) at the University of Notre Dame

- isnap.nd.edu
- 5 MV single ended accelerator
 - dc alpha beam, alphas from 300 keV up to 9 MeV
 - up to 100 uA of beam on target
 - Usually using 10 uA for these studies
 - Energy resolution of better than 1 keV, energy uncertainty of less than 10 keV

Dec 2020 setup, ND 5U "solid target" line

R

New measurements (Dec 2020)

- ¹³C(α,nγ) using
 GEANIE HPGe @ 45
 degrees
- First measurements of ¹³C(α,αγ)¹³C
- Could separate 6.92 and 7.12 MeV transitions with HPGe
- Only previous measurement was by

¹³C(α,n₀) angular distributions from ODeSA measurements

- About 20 keV energy steps
- 20 point angular distributions
- Uncertainties are usually about 5% (unfolding dominated)
- Measurements actually go up to 9 MeV, but our current measured detector response only allows us to go up to 6.5 MeV

¹³C(α ,n₁) measurements, Feb 2021

- Michael Wiescher
- ND 5U accelerator
- DC alpha beam
- 10 ug/cm² ¹³C target (György Gyürky)
- 30 uA on target
- 30 minute runs
- Typically a few hundred counts

First measurement of ${}^{13}C(\alpha,n_1)$ cross section (plus MCMC analysis)

Comparison with evaluations

Thanks to Marco Pigni for SAMMY calculations of Heil's R-matrix fit!

Improvement in uncertainty analysis

- Development of a Bayesian uncertainty analysis routine for the AZURE2 R-matrix code has been ongoing
- Daniel Odell, a postdoc at OU, is the main developer
- This work is possible thanks to Daniel Phillips and Carl Brune and a grant from

Summary and Foreword

- We've measured ${}^{13}C(\alpha,n_0)$, ${}^{13}C(\alpha,n_2\gamma)$, ${}^{13}C(\alpha,n_3\gamma)$, and ${}^{13}C(\alpha,n_4\gamma)$ in the higher energy range (5 to 9 MeV) and ${}^{13}C(\alpha,n_1)$ from 5 to 6 MeV
- Future work
 - Measure detailed angular distributions of ¹³C(α,n₀) from about 1 to 5 MeV (in two weeks)
 - Measure ODeSA response matrix up to 20 MeV at LANSCE (done last week!)
 - Expand (α,n₁) measurements from 6 to 9 MeV

Collaborators

UND

- Manuel Couder
- Kachatur Manukyan
- Ed Stech
- Dan Robertson
- Wanpang Tan
- Michael Wiescher
- August Gula
- Rebeka Kelmar
- Shahina Shahina
- + many other ND grad student shifters

ORNL

- Michael Febbraro
- Michael Smith
- Toby King
- Jason Nattress
- Marco Pigni
- OU
 - Carl Brune
 - Zach Meisel
 - Daniel Phillips
 - Kristyn Brandenburg
 - Daniel Odell

- ATOMKI
 - György Gyürky
- HZDR
 - Axel Boeltzig
- LSU
 - Kevin Macon
- Rutgers
 - Rebecca Toomey
- LANL
 - Aaron Couture
 - ► Hye Young Lee
 - Karl Smith
- UTK
 - Kate Jones

The ${}^{13}C(\alpha,n){}^{16}O$ landscape

Measurement times (\$\$ or person power)

- neutron moderator counters
 - High yield (high efficiency, high beam currents)
 - No neutron energy information
 - Background subtraction is challenging
 - Angle integrated cross section
 - Efficiency depends on the neutron energy AND angular distributions
 - Efficiency (shape) must be obtained, largely, through simulation
 - High efficiency, high beam currents, very short measurement times

- Time-of-flight
 - low yield (far geometry, low beam currents)
 - Neutron spectroscopy, resolution depends on ToF distance and neutron energy
 - Backgrounds can much more easily identified
 - Partial, differential cross sections can be measured
 - Efficiency depends on the neutron energy, but neutron energy is now known
 - Efficiency (shape) must be obtained, largely, through simulation
 - ToF facilities have low beam intensity (100 nA), leading to long measurement times

- Spectrum unfolding
 - moderate yields (far geometric, high beam currents)
 - Neutron spectroscopy, dependent on quality of experimentally determined response matrix
 - Backgrounds can much more easily identified
 - Partial, differential cross sections can be measured
 - Efficiency depends on the neutron energy, but neutron energy is now known
 - Efficiency (shape) must be obtained, largely, through simulation
 - Higher beam intensities again possible, short measurement times

Some needed data

Angular distribution data

- Not much out there
- Bonner et al. (1956), Walton et al. (1957), Kerr et al. (1968), and Robb et al. (1970)
- > At higher energy, very little **partial cross section** information
 - That is, we want ${}^{13}C(\alpha,n_0)$, ${}^{13}C(\alpha,n_1)$, ${}^{13}C(\alpha,n_2)$, ${}^{13}C(\alpha,n_3)$, ${}^{13}C(\alpha,n_4)$
 - Spear et al. (1963), secondary γ -ray study $\rightarrow {}^{13}C(\alpha, n_2\gamma), {}^{13}C(\alpha, n_{3+4}\gamma)$
 - ► ${}^{16}O(n,\alpha_0){}^{13}C$ measurements give ground state cross section through detailed balance $\rightarrow {}^{13}C(\alpha,n_0)$
 - New experiments at LANL
- Resolve the discrepancy with absolute normalization of cross section
 - Seems to be related to Carbon target structure or neutron detector efficiency
 - Probably best done using thick-target techniques or through heavy recoil detection of charged particles.